如圖,已知△OAB,點C是以A為中心的B的對稱點,D是將分成2∶1的一個內(nèi)分點,DC和OA交于點E,設(shè)=a,=b.

(1)用a和b表示向量、;

(2)若,求實數(shù)λ的值.

解:(1)依題意,A是BC的中點,

,即=2a-b,

=2a-b-b=2a-b.

(2)若,則=λa-(2a-b)=(λ-2)a+b,

共線,

∴存在實數(shù)k,使=k,

(λ-2)a+b=k(2a-b),解得λ=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濟(jì)寧一模)如圖,已知半橢圓C1
x2
a2
+y2=1(a>1,x≥0)的離心率為
2
2
,曲線C2是以半橢圓C1的短軸為直徑的圓在y軸右側(cè)的部分,點P(x0,y0)是曲線C2上的任意一點,過點P且與曲線C2相切的直線l與半橢圓C1交于不同點A,B.
(I)求a的值及直線l的方程(用x0,y0表示);
(Ⅱ)△OAB的面積是否存在最大值?若存在,求出最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓Γ:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點分別是F1(-c,0)、F2(c,0),Q是橢圓外的一個動點,滿足|
F1Q
|=2a.點P是線段F1Q與該橢圓的交點,點M在線段F2Q上,且滿足
PM
MF1
=0,|
MF2
|≠0.
(Ⅰ)求點M的軌跡C的方程;
(Ⅱ)設(shè)不過原點O的直線l與軌跡C交于A,B兩點,若直線OA,AB,OB的斜率依次成等比數(shù)列,求△OAB面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•武漢模擬)如圖,已知橢圓Γ:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別是F1(-c,0)、F2(c,0),Q是橢圓外的一個動點,滿足|F1Q|=2a.點P是線段F1Q與該橢圓的交點,點M在線段F2Q上,且滿足
PM
MF2
=0,|
MF2
|≠0.
(Ⅰ)求點M的軌跡C的方程;
(Ⅱ)設(shè)不過原點O的直線l與軌跡C交于A,B兩點,若直線OA,AB,OB的斜率依次成等比數(shù)列,求△OAB面積的取值范圍;
(Ⅲ)由(Ⅱ)求解的結(jié)果,試對橢圓Γ寫出類似的命題.(只需寫出類似的命題,不必說明理由)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知△OAB中,點C是點B關(guān)于A的對稱點,點D是線段OB的一個靠近B

三等分點,DCOA交于E,設(shè)a,b.

(1)用向量ab表示向量;

(2)若 求實數(shù)λ的值.

查看答案和解析>>

同步練習(xí)冊答案