用數(shù)學(xué)歸納法證明:
詳見(jiàn)解析
解析試題分析:由數(shù)學(xué)歸納法證明不等式的一般步驟可知:第一步應(yīng)驗(yàn)證初值時(shí)不等式成立;第二步進(jìn)行歸納假設(shè):假設(shè)當(dāng)時(shí)所證不等式成立,在此基礎(chǔ)上來(lái)證明當(dāng)時(shí)所證不等式也成立;特別注意在證時(shí)一定要用到時(shí)的結(jié)論;第三步下結(jié)論:在第一步及第二步的基礎(chǔ)上就可得出所證不等式對(duì)一切都成立.
試題解析:證明:(1)當(dāng)時(shí), , 命題成立。
(2)假設(shè)當(dāng)時(shí), 成立
當(dāng)時(shí),
+
當(dāng)時(shí)命題成立。
所以對(duì)于任意都成立.
考點(diǎn):數(shù)學(xué)歸納法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
通過(guò)圓與球的類(lèi)比,由“半徑為的圓的內(nèi)接矩形中,以正方形的面積為最大,最大值為.”猜想關(guān)于球的相應(yīng)命題為“半徑為的球內(nèi)接六面體中以 的體積為最大,最大值為 ”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
給出四個(gè)等式:
(1)寫(xiě)出第個(gè)等式,并猜測(cè)第()個(gè)等式;
(2)用數(shù)學(xué)歸納法證明你猜測(cè)的等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)實(shí)數(shù),整數(shù),.
(1)證明:當(dāng)且時(shí),;
(2)數(shù)列滿足,,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)下列是真命題還是假命題,用分析法證明你的結(jié)論.
命題:若a>b>c且a+b+c=0,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
在平面幾何里,有:“若的三邊長(zhǎng)分別為內(nèi)切圓半徑為,則三角形面積” .拓展到空間,類(lèi)比上述結(jié)論,“若四面體的四個(gè)面的面積分別為內(nèi)切球的半徑為,則四面體的體積為 ”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
設(shè)等差數(shù)列的前項(xiàng)和為,則,,,成等差數(shù)列.類(lèi)比
以上結(jié)論有:設(shè)等比數(shù)列的前項(xiàng)積為,則, ,成等比數(shù)列.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com