【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為SnnN*),等比數(shù)列{bn}的前n項(xiàng)和為TnnN*),已知a13b11,a3+b210,S3T211

(Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式:

(Ⅱ)若數(shù)列{cn}滿足c11,cn+1cnan,求c100;

(Ⅲ)設(shè)數(shù)列dnanbn,求{dn}的前n項(xiàng)和Kn

【答案】(Ⅰ)an2n+1,bn3n,nN*;(Ⅱ)10000;(Ⅲ)Knn3n+1

【解析】

(Ⅰ)等差數(shù)列{an}的公差設(shè)為d,等比數(shù)列{bn}的公比設(shè)為q,運(yùn)用等差數(shù)列和等比數(shù)列的通項(xiàng)公式,解方程可得公差和公比,進(jìn)而得到所求通項(xiàng)公式;

(Ⅱ)求得cn+1cnan2n+1,由數(shù)列的恒等式cnc1+c2c1+c3c2+…+cncn1),結(jié)合等差數(shù)列的求和公式,計(jì)算可得所求和;

(Ⅲ)求得dnanbn=(2n+13n,運(yùn)用數(shù)列的錯(cuò)位相減法求和,結(jié)合等比數(shù)列的求和公式,計(jì)算可得所求和.

(Ⅰ)等差數(shù)列{an}的公差設(shè)為d,前n項(xiàng)和為SnnN*),

等比數(shù)列{bn}的公比設(shè)為q,前n項(xiàng)和為TnnN*),

a13,b11,a3+b210,S3T211,

可得3+2d+q10,9+3d﹣(1+q)=11,

解得d2,q3

an3+2n1)=2n+1,bn33n13n,nN*;

(Ⅱ)若數(shù)列{cn}滿足c11,cn+1cnan2n+1,

可得cnc1+c2c1+c3c2+…+cncn1)=1+3+5+…+2n1

n1+2n1)=n2,

c100100210000

(Ⅲ)dnanbn=(2n+13n,

Kn33+532+733+…+2n+13n

3Kn332+533+734+…+2n+13n+1,

兩式相減可得﹣2Kn9+232+33+…+3n)﹣(2n+13n+1

9+22n+13n+1

化簡可得Knn3n+1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

如圖,長方體ABCDA1B1C1D1的底面ABCD是正方形,點(diǎn)E在棱AA1上,BEEC1.

1)證明:BE⊥平面EB1C1;

2)若AE=A1E,求二面角BECC1的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的有( )

①常數(shù)數(shù)列既是等差數(shù)列也是等比數(shù)列;②在中,若,則為直角三角形;③若為銳角三角形的兩個(gè)內(nèi)角,則;④若為數(shù)列的前項(xiàng)和,則此數(shù)列的通項(xiàng).

A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)為圓上的動(dòng)點(diǎn),點(diǎn)軸上的投影為,點(diǎn)為線段AB的中點(diǎn),設(shè)點(diǎn)的軌跡為

1)求點(diǎn)的軌跡的方程;

2)已知直線交于兩點(diǎn),,若直線的斜率之和為3,直線是否恒過定點(diǎn)?若是,求出定點(diǎn)的坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知銳角ABC中,內(nèi)角所對(duì)應(yīng)的邊分別為,且滿足:,,則的取值范圍是____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的不等式,其中

1)試求不等式的解集;

2)對(duì)于不等式的解集,記(其中為整數(shù)集),若集合為有限集,求實(shí)數(shù)的取值范圍,使得集合中元素個(gè)數(shù)最少,并用列舉法表示集合;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓的左、右焦點(diǎn),橢圓過點(diǎn).

(1)求橢圓的方程;

(2)過點(diǎn)的直線(不過坐標(biāo)原點(diǎn))與橢圓交于,兩點(diǎn),且點(diǎn)軸上方,點(diǎn)軸下方,,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足為等比數(shù)列,且

1)求

2)設(shè),記數(shù)列的前項(xiàng)和為

①求

②求正整數(shù) k,使得對(duì)任意均有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(不等式選講)

已知函數(shù)

(1)若,解不等式;

(2)若不等式在R上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案