三棱錐S—ABC中,∠SBA=∠SCA=90°,△ABC是斜邊AB=a的等腰直角三角形,則以下結(jié)論中:
①異面直線SB與AC所成的角為90°.
②直線SB⊥平面ABC;
③平面SBC⊥平面SAC;
④點(diǎn)C到平面SAB的距離是a.
其中正確結(jié)論的序號(hào)是________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第三章 三角函數(shù)、解三角形(解析版) 題型:選擇題
給出下列命題:
①第二象限角大于第一象限角;
②三角形的內(nèi)角是第一象限角或第二象限角;
③不論用角度制還是用弧度制度量一個(gè)角,它們與扇形所對半徑的大小無關(guān);
④若sinα=sinβ,則α與β的終邊相同;
⑤若cosθ<0,則θ是第二或第三象限的角.
其中正確命題的個(gè)數(shù)是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 集合、常用邏輯用語、不等式、函數(shù)與導(dǎo)數(shù)(解析版) 題型:選擇題
設(shè)a=log0.32,b=log0.33,c=20.3,d=0.32,則這四個(gè)數(shù)的大小關(guān)系是( )
A.a(chǎn)<b<c<d B.b<a<d<c
C.b<a<c<d D.d<c<a<b
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 解析幾何(解析版) 題型:選擇題
設(shè)拋物線C:y2=2px(p≥0)的焦點(diǎn)為F,點(diǎn)M在C上,|MF|=5.若以MF為直徑的圓過點(diǎn)(0,2),則C的方程為( )
A.y2=4x或y2=8x B.y2=2x或y2=8x
C.y2=4x或y2=16x D.y2=2x或y2=16x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:解答題
如圖所示,PA⊥平面ABC,點(diǎn)C在以AB為直徑的⊙O上,∠CBA=30°,PA=AB=2,點(diǎn)E為線段PB的中點(diǎn),點(diǎn)M在弧AB上,且OM∥AC.
(1)求證:平面MOE∥平面PAC.
(2)求證:平面PAC⊥平面PCB.
(3)設(shè)二面角M—BP—C的大小為θ,求cos θ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:選擇題
已知正四棱錐S—ABCD中,SA=2,那么當(dāng)該棱錐的體積最大時(shí),它的高為( )
A.1 B. C.2 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:選擇題
在正四面體P-ABC中,D,E,F(xiàn)分別是AB,BC,CA的中點(diǎn),下面四個(gè)結(jié)論中不成立的( )
A.BC∥平面PDF
B.DF⊥平面PAE
C.平面PDE⊥平面ABC
D.平面PAE⊥平面ABC
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 概率與統(tǒng)計(jì)(解析版) 題型:選擇題
如圖所示的是甲、乙兩人在5次綜合測評中成績的莖葉圖,其中一個(gè)數(shù)字被污損,則甲的平均成績超過乙的平均成績的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 三角函數(shù)、解三角形與平面向量(解析版) 題型:選擇題
命題“對任意x∈R,都有x2≥0”的否定為( )
A.對任意x∈R,都有x2<0
B.不存在x∈R,使得x2<0
C.存在x0∈R,使得x02≥0
D.存在x0∈R,使得x02<0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com