三棱錐S—ABC中,∠SBA=∠SCA=90°,△ABC是斜邊AB=a的等腰直角三角形,則以下結(jié)論中:

①異面直線SB與AC所成的角為90°.

②直線SB⊥平面ABC;

③平面SBC⊥平面SAC;

④點(diǎn)C到平面SAB的距離是a.

其中正確結(jié)論的序號(hào)是________.

 

①②③④

【解析】由題意知AC⊥平面SBC,故AC⊥SB,SB⊥平面ABC,平面SBC⊥平面SAC,①②③正確;取AB的中點(diǎn)E,連接CE,可證得CE⊥平面SAB,故CE的長度即為C到平面SAB的距離a,④正確.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第三章 三角函數(shù)、解三角形(解析版) 題型:選擇題

給出下列命題:

①第二象限角大于第一象限角;

②三角形的內(nèi)角是第一象限角或第二象限角;

③不論用角度制還是用弧度制度量一個(gè)角,它們與扇形所對半徑的大小無關(guān);

④若sinα=sinβ,則α與β的終邊相同;

⑤若cosθ<0,則θ是第二或第三象限的角.

其中正確命題的個(gè)數(shù)是(  )

A.1     B.2     C.3     D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 集合、常用邏輯用語、不等式、函數(shù)與導(dǎo)數(shù)(解析版) 題型:選擇題

設(shè)a=log0.32,b=log0.33,c=20.3,d=0.32,則這四個(gè)數(shù)的大小關(guān)系是( )

A.a(chǎn)<b<c<d B.b<a<d<c

C.b<a<c<d D.d<c<a<b

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 解析幾何(解析版) 題型:選擇題

設(shè)拋物線C:y2=2px(p≥0)的焦點(diǎn)為F,點(diǎn)M在C上,|MF|=5.若以MF為直徑的圓過點(diǎn)(0,2),則C的方程為(  )

A.y2=4x或y2=8x B.y2=2x或y2=8x

C.y2=4x或y2=16x D.y2=2x或y2=16x

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:解答題

如圖所示,PA⊥平面ABC,點(diǎn)C在以AB為直徑的⊙O上,∠CBA=30°,PA=AB=2,點(diǎn)E為線段PB的中點(diǎn),點(diǎn)M在弧AB上,且OM∥AC.

(1)求證:平面MOE∥平面PAC.

(2)求證:平面PAC⊥平面PCB.

(3)設(shè)二面角M—BP—C的大小為θ,求cos θ的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:選擇題

已知正四棱錐S—ABCD中,SA=2,那么當(dāng)該棱錐的體積最大時(shí),它的高為(  )

A.1   B.   C.2   D.3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:選擇題

在正四面體P-ABC中,D,E,F(xiàn)分別是AB,BC,CA的中點(diǎn),下面四個(gè)結(jié)論中不成立的(  )

A.BC∥平面PDF

B.DF⊥平面PAE

C.平面PDE⊥平面ABC

D.平面PAE⊥平面ABC

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 概率與統(tǒng)計(jì)(解析版) 題型:選擇題

如圖所示的是甲、乙兩人在5次綜合測評中成績的莖葉圖,其中一個(gè)數(shù)字被污損,則甲的平均成績超過乙的平均成績的概率為( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 三角函數(shù)、解三角形與平面向量(解析版) 題型:選擇題

命題“對任意x∈R,都有x2≥0”的否定為(  )

A.對任意x∈R,都有x2<0

B.不存在x∈R,使得x2<0

C.存在x0∈R,使得x02≥0

D.存在x0∈R,使得x02<0

 

查看答案和解析>>

同步練習(xí)冊答案