f(x)為奇函數(shù),且在(0,+∞)上是增函數(shù),若f(-2)=0,則x•f(x)>0的解集是(  )
A.(-2,0)∪(2,+∞)B.(0,2)C.(-∞,-2)∪(2,+∞)D.(2,+∞)
因為f(x)在(0,+∞)上是增函數(shù),且為奇函數(shù),
所以f(x)在(-∞,0)上也為增函數(shù),
作出函數(shù)f(x)的草圖,如下所示:

由x•f(x)>0,得
x>0
f(x)>0
,或
x<0
f(x)<0
,
據(jù)圖象,得x>2或x<-2,
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=log2(
1+x
1-ax
)
(a∈R),若f(-
1
3
)=-1

(1)求f(x)解析式并判斷其奇偶性;
(2)當(dāng)x∈[-1,0)時,求f(3x)的值域;
(3)g(x)=log
2
1+x
k
,若x∈[
1
2
,
2
3
]
時,f(x)≤g(x)有解,求實數(shù)k取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(A題)定義域為[-1,1]的奇函數(shù)y=f(x),若f(
1
2
)=-2,則f(-
1
2
)的值為( 。
A.
1
2
B.2C.-
1
2
D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知奇函數(shù)f(x)的定義域是[-1,0)∪(0,1],其在y軸右側(cè)的圖象如圖所示,則不等式f(-x)-f(x)<1的解集為( 。
A.{x|-
1
2
<x<0}
B.{x|-
1
2
<x<0
或0<x≤1}
C.{x|-1≤x<-
1
2
或0<x≤1}
D.{x|-1≤x<0或
1
2
<x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對任意a∈[-2,3],不等式x2+(a-6)x+9-3a>0恒成立,則實數(shù)x的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)y=f(x)的圖象與函數(shù)y=
x-2
x+3
的圖象關(guān)于y=x對稱,則函數(shù)f(x)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知f(x)是定義在實數(shù)集上的奇函數(shù),且當(dāng)x>0時,f(x)=2x
(1)當(dāng)x<0時,求f(x)的解析式;
(2)畫出函數(shù)f(x)的圖象;
(3)寫出函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)=ax+a-x(a>0且a≠1)
(Ⅰ)證明函數(shù)f(x)的圖象關(guān)于y軸對稱;
(Ⅱ)判斷f(x)在(0,+∞)上的單調(diào)性,并用定義加以證明;
(Ⅲ)當(dāng)x∈[1,2]時函數(shù)f(x)的最大值為
5
2
,求此時a的值.
(Ⅳ)當(dāng)x∈[-2,-1]時函數(shù)f(x)的最大值為
5
2
,求此時a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)在定義域上是奇函數(shù),且在區(qū)間(-∞,0)上是增函數(shù)的是(  )
A.y=x
1
3
B.y=x
1
2
C.y=x-2D.y=x
4
3

查看答案和解析>>

同步練習(xí)冊答案