【題目】已知函數(shù).
(1)求函數(shù)的圖象在點處的切線方程;
(2)若在上有解,求的取值范圍;
(3)設是函數(shù)的導函數(shù),是函數(shù)的導函數(shù),若函數(shù)的零點為,則點恰好就是該函數(shù)的對稱中心.試求的值.
科目:高中數(shù)學 來源: 題型:
【題目】某中學學校對高三年級文科學生進行了一次自主學習習慣的自評滿意度的調查,按系統(tǒng)抽樣方法得到了一個自評滿意度(百分制,單位:分)的樣本,如圖分別是該樣本數(shù)據(jù)的莖葉圖和頻率分布直方圖(都有部分缺失).
(1)完善頻率分布直方圖(需寫出計算過程);
(2)分別根據(jù)莖葉圖和頻率分布直方圖求出樣本數(shù)據(jù)的中位數(shù)m1和m2,并指出選用哪一個數(shù)據(jù)來估計總體的中位數(shù)更合理(需要敘述理由).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】水污染現(xiàn)狀與工業(yè)廢水排放密切相關,某工廠深人貫徹科學發(fā)展觀,努力提高污水收集處理水平,其污水處理程序如下:原始污水必先經(jīng)過A系統(tǒng)處理,處理后的污水(A級水)達到環(huán)保標準(簡稱達標)的概率為p(0<p<1).經(jīng)化驗檢測,若確認達標便可直接排放;若不達標則必須進行B系統(tǒng)處理后直接排放.
某廠現(xiàn)有4個標準水量的A級水池,分別取樣、檢測,多個污水樣本檢測時,既可以逐個化驗,也可以將若干個樣本混合在一起化驗,混合樣本中只要有樣本不達標,則混合樣本的化驗結果必不達標,若混合樣本不達標,則該組中各個樣本必須再逐個化驗;若混合樣本達標,則原水池的污水直接排放
現(xiàn)有以下四種方案:
方案一:逐個化驗;
方案二:平均分成兩組化驗;方案三;三個樣本混在一起化驗,剩下的一個單獨化驗;
方案四:四個樣本混在一起化驗.
化驗次數(shù)的期望值越小,則方案越"優(yōu)".
(1)若,求2個A級水樣本混合化驗結果不達標的概率;
(2)①若,現(xiàn)有4個A級水樣本需要化驗,請問:方案一、二、四中哪個最“優(yōu)"?②若“方案三”比“方案四"更“優(yōu)”,求p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義一:對于一個函數(shù),若存在兩條距離為d的直線和,使得在時,恒成立,則稱函數(shù)在D內(nèi)有一個寬度為d的通道.定義二:若一個函數(shù),對于任意給定的正數(shù),都存在一個實數(shù),使得函數(shù)在內(nèi)有一個寬度為的通道,則稱在正無窮處有永恒通道.下列函數(shù):①;②;③.其中在正無窮處有永恒通道的函數(shù)的個數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線的焦點為,為拋物線上異于原點的任意一點,以為直徑作圓,當直線的斜率為1時,.
(1)求拋物線的標準方程;
(2)過焦點作的垂線與圓的一個交點為,交拋物線于,(點在點,之間),記的面積為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種水箱用的“浮球”是由兩個相同半球和一個圓柱筒組成,它的軸截面如圖所示,已知半球的直徑是,圓柱筒高,為增強該“浮球”的牢固性,給“浮球”內(nèi)置一“雙蝶形”防壓卡,防壓卡由金屬材料桿,,,,,及焊接而成,其中,分別是圓柱上下底面的圓心,,,,均在“浮球”的內(nèi)壁上,AC,BD通過“浮球”中心,且、均與圓柱的底面垂直.
(1)設與圓柱底面所成的角為,試用表示出防壓卡中四邊形的面積,并寫出的取值范圍;
(2)研究表明,四邊形的面積越大,“浮球”防壓性越強,求四邊形面積取最大值時,點到圓柱上底面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司統(tǒng)計了2010~2018年期間公司年收的增加值(萬元)以及相應的年增長率,所得數(shù)據(jù)如下所示:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
代碼 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
增加值 | 1555 | 2100 | 2220 | 2740 | 3135 | 3563 | 4041 | 5494.4 | 6475 |
增長率 |
|
(1)通過散點圖可知,可用線性回歸模型擬合2010~2014年與的關系;
①求2010~2014年這5年期間公司年利潤的增加值的平均數(shù);
②求關于的線性回歸方程;
(2)從哪年開始連續(xù)三年公司利潤增加值的方差最大?(不需要說明理由)
附:參考公式:回歸直線方程中的斜率和截距的最小二乘估計公式分別為,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的部分圖象如圖所示.
(1) 求函數(shù)的解析式;
(2) 如何由函數(shù)的通過適當圖象的變換得到函數(shù)的圖象, 寫出變換過程;
(3) 若,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中e為自然對數(shù)的底數(shù).
(1)討論函數(shù)的單調性;
(2)用表示中較大者,記函數(shù).若函數(shù)在上恰有2個零點,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com