【題目】已知橢圓的左焦點,直線y軸交于點P.且與橢圓交于A,B兩點.A為橢圓的右頂點,Bx軸上的射影恰為。

1)求橢圓E的方程;

2M為橢圓E在第一象限部分上一點,直線MP與橢圓交于另一點N,若,求的取值范圍.

【答案】1;(2)

【解析】

2)利用已知條件列出方程組,求解橢圓的幾何量,然后求解橢圓E的方程.
2)利用三角形的面積的比值,推出線段的比值,得到

MN方程:,,聯(lián)立方程,利用韋達定理,求出
,解出,將代入韋達定理,然后求解實數(shù)λ的取值范圍.

解:與橢圓的一個交點A為橢圓的右頂點

.

軸,得到點

,

橢圓E的方程為。

(2)因為

所以,由(1)可知,設MN方程,,

聯(lián)立方程,得,得,

,有,將其代入化簡可得:,因為M為橢圓E在第一象限部分上一點,所以,

,則,

解得

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以原點為極點,軸的正半軸為極軸,以相同的長度單位建立極坐標系,已知直線的極坐標方程為,曲線的極坐標方程為

(l)設為參數(shù),若,求直線的參數(shù)方程;

2)已知直線與曲線交于,,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓,定義橢圓的“相關圓”方程為.若拋物線的焦點與橢圓的一個焦點重合,且橢圓短軸的一個端點和其兩個焦點構成直角三角形.

(1)求橢圓的方程和“相關圓”的方程;

(2)過“相關圓”上任意一點的直線與橢圓交于兩點.為坐標原點,若,證明原點到直線的距離是定值,并求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)的極小值為0,求的值;

(2),求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓x2+y2=8內(nèi)有一點P0-1,2),AB為過點P0且傾斜角為α的弦.

1)當α=時,求AB的長;

2)當弦AB被點P0平分時,寫出直線AB的方程(用直線方程的一般式表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知直線的方程為,曲線是以坐標原點為頂點,直線為準線的拋物線.以坐標原點為極點,軸非負半軸為極軸建立極坐標系.

(1)分別求出直線與曲線的極坐標方程:

(2)點是曲線上位于第一象限內(nèi)的一個動點,點是直線上位于第二象限內(nèi)的一個動點,且,請求出的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC,A,B,C所對的邊分別為a,b,c,asinAcosC+csinAcosA=c.

(1)c=1,sinC=,ABC的面積S;

(2)DAC的中點,cosB=,BD=,ABC的三邊長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線y2=2px(p>0)的焦點為F,拋物線上的兩個動點A,B始終滿足∠AFB=60°,過弦AB的中點H作拋物線的準線的垂線HN,垂足為N,的取值范圍為

A.(0,]B.[,+∞)

C.[1,+∞)D.(0,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前n項和為,且滿足,數(shù)列中,,對任意正整數(shù),.

1)求數(shù)列的通項公式;

2)是否存在實數(shù),使得數(shù)列是等比數(shù)列?若存在,請求出實數(shù)及公比q的值,若不存在,請說明理由;

3)求數(shù)列n項和.

查看答案和解析>>

同步練習冊答案