已知k∈[-2,2],則k的值使得過點(diǎn)A(0,2)可以作2條直線與圓x2+y2+kx-2y+
5
4
k=0
相切的概率為(  )
A、
1
2
B、
2
3
C、
3
4
D、
1
4
考點(diǎn):幾何概型
專題:概率與統(tǒng)計(jì)
分析:把圓的方程化為標(biāo)準(zhǔn)方程后,根據(jù)構(gòu)成圓的條件得到等號(hào)右邊的式子大于0,列出關(guān)于k的不等式,求出不等式的解集,然后由過已知點(diǎn)總可以作圓的兩條切線,得到點(diǎn)在圓外,故把點(diǎn)的坐標(biāo)代入圓的方程中得到一個(gè)關(guān)系式,讓其大于0列出關(guān)于k的不等式,求出不等式的解集,綜上,求出兩解集的并集即為實(shí)數(shù)k的取值范圍.最后利用幾何概型的計(jì)算公式求解即得.
解答: 解:把圓的方程化為標(biāo)準(zhǔn)方程得:(x+
1
2
k)2+(y-1)2=
1
4
k2-
5
4
k+1,
所以
1
4
k2-
5
4
k+1>0,解得:k>4或k<1,
又點(diǎn)A(0,2)應(yīng)在已知圓的外部,
把點(diǎn)代入圓方程得:4-4+
5
4
k>0,解得:k>0,
則實(shí)數(shù)k的取值范圍是(0,1).
任取k∈[-2,2],
則k的值使得過A(0,2)可以作兩條直線與圓x2+y2+kx-2y+
5
4
k=0
相切的概率為P=
1-0
2-(-2)
=
1
4
,
故選:D.
點(diǎn)評(píng):此題考查了幾何概型,點(diǎn)與圓的位置關(guān)系,二元二次方程為圓的條件及一元二次不等式的解法.理解過已知點(diǎn)總利用作圓的兩條切線,得到把點(diǎn)坐標(biāo)代入圓方程其值大于0是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,點(diǎn)D在邊BC上,且DC=2BD,AB:AD:AC=3:k:1,則實(shí)數(shù)k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinωx,g(x)=sin(2x+
π
2
),有下列命題:
①當(dāng)ω=2時(shí),函數(shù)y=f(x)g(x)是最小正周期為
π
2
的偶函數(shù);
②當(dāng)ω=1時(shí),f(x)+g(x)的最大值為
9
8
;
③當(dāng)ω=2時(shí),將函數(shù)f(x)的圖象向左平移
π
2
可以得到函數(shù)g(x)的圖象.
其中正確命題的序號(hào)是
 
(把你認(rèn)為正確的命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的圓心是直線x-y+1=0與x軸的交點(diǎn),且圓C與直線x+y+3=0相切,則圓C的方程是( 。
A、(x+1)2+y2=2
B、(x+1)2+y2=8
C、(x-1)2+y2=2
D、(x-1)2+y2=8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出程序框圖,若輸入的x值為-5,則輸出的y的值是(  )
A、-2B、-1C、0D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方形OABC的四個(gè)頂點(diǎn)坐標(biāo)分別為O(0,0),A(1,0),B(1,1),C(0,1),現(xiàn)向該正方體內(nèi)部隨機(jī)投1000個(gè)點(diǎn),統(tǒng)計(jì)出所投點(diǎn)落在陰影部分的個(gè)數(shù)為328,由此估計(jì)圖中陰影部分的面積為(  )
A、0.328B、0.672
C、0.3D、0.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線C1的中心在原點(diǎn),焦點(diǎn)在x軸上,若C1的一個(gè)焦點(diǎn)與拋物線C2:y2=12x的焦點(diǎn)重合,且拋物線C2的準(zhǔn)線交雙曲線C1所得的弦長(zhǎng)為4
3
,則雙曲線C1的實(shí)軸長(zhǎng)為( 。
A、6
B、2
6
C、
3
D、2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,
OA
OB
為平面的一組基向量,
OC
=3
OA
OD
=
3
2
OB
,AD與BC交與點(diǎn)P.
(1)求
OP
關(guān)于
OA
,
OB
的分解式;
(2)設(shè)∠BOA=60°,|
OA
|=|
OB
|=7,求|
OP
|;
(3)過P任作直線l交直線OA,OB于M,N兩點(diǎn),設(shè)
OM
=m
OA
,
ON
=n
OB
,(m,n≠0)求m,n的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從棱長(zhǎng)為1的正方體的8個(gè)頂點(diǎn)中任取不同2點(diǎn),設(shè)隨機(jī)變量ξ是這兩點(diǎn)間的距離.
(1)求概率P(ξ=
2
)
;
(2)求ξ的分布列,并求其數(shù)學(xué)期望E(ξ).

查看答案和解析>>

同步練習(xí)冊(cè)答案