9.在正四面體P-ABC中,D、E、F分別是AB、BC、CA的中點(diǎn),下面四個(gè)結(jié)論中不成立的是②.
①BC∥面PDF;
②面PDF⊥面ABC;
③DF⊥面PAE;
④面PAE⊥面ABC.

分析 根據(jù)正四面體的結(jié)構(gòu)特征,利用空間線面位置關(guān)系的判定定理進(jìn)行證明或說(shuō)明錯(cuò)誤原因.

解答 解:∵D,F(xiàn)是AB,AC的中點(diǎn),∴BC∥DF,
∴BC∥平面PDF,故①正確;
過(guò)P作PO⊥平面ABC,垂足為O,則O為△ABC的中心,
∴O在AE上,且AO=$\frac{2}{3}$AE,
設(shè)AE與DF的交點(diǎn)為M,連接PM,
則AM=$\frac{1}{2}$AE,∴O,M不重合,∴面PDF與面ABC不垂直,故②錯(cuò)誤;
∵三棱錐P-ABC是正四面體,
∴PE⊥BC,AE⊥BC,
∴BC⊥平面PAE,又DF∥BC,
∴DF⊥平面PAE,故③正確;
∵PO?平面PAE,PO⊥平面ABC,
∴面PAE⊥面ABC.故④正確.
故答案為:②.

點(diǎn)評(píng) 本難題考查了空間線面位置關(guān)系的判斷,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知實(shí)數(shù)x,y滿足不等式組$\left\{{\begin{array}{l}{2x-y+2≥0}\\{x-4y+1≤0}\\{x+y-2≤0}\end{array}}\right.$,則z=3|x|+y的最小值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,點(diǎn)M,N分別是正方體ABCD-A1B1C1D1的棱BC,CC1的中點(diǎn),則異面直線B1D1和MN所成的角是(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列表示中,屬于同一集合的是 ( 。
A.M={3,2},N={(3,2)}B.M={3,2},N={2,3}
C.M={(x,y)|y=-x+1},N={y|y=1-x}D.M={1,2},N={(2,1)}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)U=R,A={x|x<2},B={x|x>m},若∁UA⊆B,則實(shí)數(shù)m的取值范圍是(-∞,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.(文科)已知拋物線y2=2x,直線l過(guò)點(diǎn)(0,2)與拋物線交于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),且$\overrightarrow{OM}$•$\overrightarrow{ON}$=0,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.過(guò)點(diǎn)A(4,1)的圓C與直線x-y-1=0相切于點(diǎn)B(2,y),求圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.(1)已知f(x+1)=x2+4x+1,求f(x)的解析式.
(2)已知f(x)是一次函數(shù),且滿足3f(x+1)-f(x)=2x+9.求f(x).
(3)已知f(x)滿足2f(x)+f($\frac{1}{x}$)=3x,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.(1)設(shè)有命題p:{2n}是等差數(shù)列,q:{2n}是等比數(shù)列,問(wèn)命題?(p∨q)和命題(?p)∧(?q)是真命題還是假命題?
(2)設(shè)p,q是任意兩個(gè)命題,完成下列真值表:
pqP∨q¬(p∨q)¬p¬q(¬p)∧(¬q)

查看答案和解析>>

同步練習(xí)冊(cè)答案