【題目】如圖,在四棱錐中,側(cè)面是正三角形,且與底面垂直,底面是邊長為2的菱形, 是的中點,過三點的平面交于, 為的中點,求證:
(1)平面;
(2)平面;
(3)平面平面.
【答案】(1)見解析(2)見解析(3)見解析
【解析】試題分析:(1)先證明四邊形是平行四邊形,得 平面 ,進而可得結(jié)論;(2)先由面面垂直的性質(zhì)可得,再證 ,由 可得 ,可得 平面 ;(3)由(2)可得 ,由等腰三角形性質(zhì)得,進而由面面垂直的判定定理得結(jié)論.
試題解析:(1) 平面
平面
平面平面平面,
又因
,
是的中點, 是的中點,底面是邊長為2的菱形,
四邊形是平行四邊形,
平面
平面;
(2)側(cè)面是正三角形,且與底面垂直, 為的中點,
由余弦定理可得,由正弦定理可得:
由可得
平面;
(3) 由(2)知平面, 平面
是的中點,
平面.
平面.
【方法點晴】本題主要考查線面平行的判定定理、線面垂直的判定定理及面面垂直的判定定理,屬于難題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關(guān)鍵是設法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面. 本題(1)是就是利用方法①證明的.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)為奇函數(shù),(1)求的值;(2)判斷并證明函數(shù)的單調(diào)性;(3)是否存在這樣的實數(shù),使對一切恒成立,若存在,試求出取值的集合;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正方體ABCD-A1B1C1D中,M為DD1的中點,O為AC的中點,AB=2.
(I)求證:BD1∥平面ACM;
(Ⅱ)求證:B1O⊥平面ACM;
(Ⅲ)求三棱錐O-AB1M的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若曲線上點處的切線過點,求函數(shù)的單調(diào)減區(qū)間;
(2)若函數(shù)在上無零點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖(a),在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=8,AD=CD=4,將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體D-ABC,如圖(b)所示.
(1)求證:BC⊥平面ACD;
(2)求幾何體D-ABC的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,公園有一塊邊長為2的等邊三角形的地,現(xiàn)修成草坪,圖中把草坪分成面積相等的兩部分, 在上, 在上.
(1)設, ,請將表示為的函數(shù),并求出該函數(shù)的定義域;
(2)如果是灌溉水管,為節(jié)約成本,希望它最短, 的位置應在哪里?如果是參觀線路,則希望它最長, 的位置又應在哪里?請予以說明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一名戰(zhàn)士在一次射擊中,命中環(huán)數(shù)大于8,大于5,小于4,小于6這四個事件中,互斥事件有( )
A.2對B.4對C.6對D.3對
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某次測驗中,有6位同學的平均成績?yōu)?5分, 用xn表示編號為n(n=1,2,…,6)的同學所得成績,且前5位同學的成績?nèi)缦拢?/span>
編號n | 1 | 2 | 3 | 4 | 5 |
成績xn | 70 | 76 | 72 | 70 | 72 |
(1)求第6位同學的成績x6,及這6位同學成績的標準差s;
(2)從前5位同學中選2位同學,求恰有1位同學成績在區(qū)間(68,75)中的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)求過直線l1:x-2y+3=0與直線l2:2x+3y-8=0的交點,且到點P(0,4)的距離為2的直線方程.
(2)設直線l的方程為(a+1)x+y+2-a=0(a∈R).若l在兩坐標軸上的截距相等,求l的方程;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com