為了調(diào)查某野生動(dòng)物保護(hù)區(qū)內(nèi)某種野生動(dòng)物的數(shù)量,調(diào)查人員逮到這種動(dòng)物1200只作過標(biāo)記后放回,一星期后,調(diào)查人員再次逮到該種動(dòng)物1000只,其中作過標(biāo)記的有100只,估算保護(hù)區(qū)有這種動(dòng)物
 
只.
考點(diǎn):收集數(shù)據(jù)的方法
專題:概率與統(tǒng)計(jì)
分析:設(shè)出總體個(gè)數(shù),由第一次逮住該種動(dòng)物與第二次逮到該種動(dòng)物所占的比例數(shù)相同,即可估計(jì)該種動(dòng)物的總體是多少.
解答: 解:設(shè)保護(hù)區(qū)有這種動(dòng)物有x只,由題意得
1200
x
=
100
1000
,
解得 x=12000,
∴估計(jì)該保護(hù)區(qū)有這種動(dòng)物約有12000只.
故答案為:12000.
點(diǎn)評(píng):本題考查了用樣本的頻率估計(jì)總體數(shù)據(jù)分布的問題,是基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)棱錐的三視圖如圖所示,則該棱錐的體積為( 。
A、28B、24C、72D、36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知 S=5+9+13+…+102,分別用“For”語句和“While”語句描述計(jì)算S這一問題的算法過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AB邊上的高所在直線方程為x+2y+1=0,∠C的平分線所在直線方程為y-1=0,若點(diǎn)A的坐標(biāo)為(0,-1),求:
(Ⅰ)點(diǎn)C的坐標(biāo);
(Ⅱ)直線AB的方程;
(Ⅲ)B點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-(
3
4
a+3)x2+3ax,x∈[0,4].
(1)若2<a<4,求函數(shù)f(x)的值域;
(2)若f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍;
(3)設(shè)g(x)=
11
16
(x-xlnx),是否存在實(shí)數(shù)a,使得對(duì)于任意的x0∈[
1
e
,e],都有兩個(gè)不同的實(shí)數(shù)x1,x2,使得f(x1)=f(x2)=g(x0)?若存在,求a的取值范圍,否則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且a<b<c,sinA=
3
a
2b

(Ⅰ)求角B的大。
(Ⅱ)若a=2,b=
7
,求c及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四棱錐P-ABCD底面是平行四邊形,平面PAB⊥平面ABCD,PA=PB=AB=
1
2
AD=1,∠BAD=60°,E,F(xiàn)分別為AD,PC的中點(diǎn).
(Ⅰ)求證:EF∥平面PAB
(Ⅱ)求三棱錐VP-ABD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若sinA+sinB=sinC(cosA+cosB).
(1)判斷△ABC的形狀;
(2)在上述△ABC中,若角C的對(duì)邊c=1,求該三角形內(nèi)切圓面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把下列參數(shù)方程化為普通方程,并說明是什么曲線.
(1)
x=t2-3t+1
y=t-1.
(t為參數(shù));
(2)
x=
a
2
(t+
1
t
)
y=
b
2
(t-
1
t
).
(t為參數(shù)).

查看答案和解析>>

同步練習(xí)冊(cè)答案