【題目】在直角坐標(biāo)系xOy中,直線l的方程是y=8,圓C的參數(shù)方程是 (φ為參數(shù)).以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系. (Ⅰ)求直線l和圓C的極坐標(biāo)方程;
(Ⅱ)射線OM:θ=α(其中 )與圓C交于O、P兩點(diǎn),與直線l交于點(diǎn)M,射線ON: 與圓C交于O、Q兩點(diǎn),與直線l交于點(diǎn)N,求 的最大值.

【答案】解:(Ⅰ)∵直線l的方程是y=8,∴直線l的極坐標(biāo)方程是ρsinθ=8.

∵圓C的參數(shù)方程是 (φ為參數(shù)),

∴圓C的普通方程分別是x2+(y﹣2)2=4,

即x2+y2﹣4y=0,

∴圓C的極坐標(biāo)方程是ρ=4sinθ.

(Ⅱ)依題意得,點(diǎn)P,M的極坐標(biāo)分別為 ,

∴|OP|=4sinα,|OM|= ,

從而 = =

同理, =

= = ,

故當(dāng) 時(shí), 的值最大,該最大值是


【解析】(Ⅰ)由直線的直角坐標(biāo)方程能求出直線l的極坐標(biāo)方程,由圓C的參數(shù)方程,能求出圓C的普通方程,從而能求出圓C的極坐標(biāo)方程.(Ⅱ)求出點(diǎn)P,M的極坐標(biāo),從而 = , = ,由此能求出 的最大值是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下命題:
⑴“ ”是“曲線 表示橢圓”的充要條件
⑵命題“若 ,則 ”的否命題為:“若 ,則
中, . 是斜邊 上的點(diǎn), .以 為起點(diǎn)任作一條射線 點(diǎn),則 點(diǎn)落在線段 上的概率是
⑷設(shè)隨機(jī)變量 服從正態(tài)分布 ,若 ,則
則正確命題有( )個(gè)
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l: (t為參數(shù)),曲線C1 (θ為參數(shù)). (Ⅰ)設(shè)l與C1相交于A,B兩點(diǎn),求|AB|;
(Ⅱ)若把曲線C1上各點(diǎn)的橫坐標(biāo)壓縮為原來的 倍,縱坐標(biāo)壓縮為原來的 倍,得到曲線C2 , 設(shè)點(diǎn)P是曲線C2上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中國詩詞大會(huì)》(第二季)亮點(diǎn)頗多,十場比賽每場都有一首特別設(shè)計(jì)的開場詩詞,在聲光舞美的配合下,百人團(tuán)齊聲朗誦,別有韻味.若《將進(jìn)酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另確定的兩首詩詞排在后六場,且《將進(jìn)酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰且均不排在最后,則后六場的排法有(
A.144種
B.288種
C.360種
D.720種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且
(1)求A的大;
(2)若 ,D是BC的中點(diǎn),求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四邊形ABCD是菱形,且∠A=60°,AB=2,E為AB的中點(diǎn),將四邊形EBCD沿DE折起至EDC1B1 , 如圖2.
(Ⅰ) 求證:平面ADE⊥平面AEB1;
(Ⅱ) 若二面角A﹣DE﹣C1的大小為 ,求三棱錐C1﹣AB1D的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】曲線C是平面內(nèi)與兩個(gè)定點(diǎn)F1(﹣2,0),F(xiàn)2(2,0)的距離之積等于9的點(diǎn)的軌跡.給出下列命題: ①曲線C過坐標(biāo)原點(diǎn);
②曲線C關(guān)于坐標(biāo)軸對(duì)稱;
③若點(diǎn)P在曲線C上,則△F1PF2的周長有最小值10;
④若點(diǎn)P在曲線C上,則△F1PF2面積有最大值
其中正確命題的個(gè)數(shù)為(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),其中0≤α<π.在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C1:ρ=4cosθ.直線l與曲線C1相切.
(1)將曲線C1的極坐標(biāo)方程化為直角坐標(biāo)方程,并求α的值.
(2)已知點(diǎn)Q(2,0),直線l與曲線C2:x2+ =1交于A,B兩點(diǎn),求△ABQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的三個(gè)內(nèi)角A、B、C所對(duì)的邊長分別是a、b、c,且 ,若將函數(shù)f(x)=2sin(2x+B)的圖象向右平移 個(gè)單位長度,得到函數(shù)g(x)的圖象,則g(x)的解析式為( )
A.
B.
C.2sin2x
D.2cos2x

查看答案和解析>>

同步練習(xí)冊(cè)答案