6.若log2a+log2b=0(a>0,b>0,a≠1,b≠1),則函數(shù)f(x)=ax與g(x)=-logbx的圖象關(guān)于(  )
A.直線y=x對(duì)稱(chēng)B.x軸對(duì)稱(chēng)C.y軸對(duì)稱(chēng)D.原點(diǎn)對(duì)稱(chēng)

分析 利用對(duì)數(shù)的運(yùn)算性質(zhì)可得:ab=1,再利用對(duì)數(shù)的運(yùn)算性質(zhì)、互為反函數(shù)的圖象的性質(zhì)即可得出.

解答 解:∵log2a+log2b=0(a>0,b>0,a≠1,b≠1),
∴ab=1,
則函數(shù)f(x)=ax與g(x)=-logbx=-$lo{g}_{\frac{1}{a}}x$=logax的圖象關(guān)于直線y=x對(duì)稱(chēng).
故選:A.

點(diǎn)評(píng) 本題考查了互為反函數(shù)的圖象的性質(zhì)、對(duì)數(shù)的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖,四邊形ABCD的四個(gè)頂點(diǎn)在半徑為2的圓O上,若∠BAD=$\frac{π}{3}$,CD=2,則BC=( 。
A.2B.4C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.將一張紙沿直線l對(duì)折一次后,點(diǎn)A(0,4)與點(diǎn)B(8,0)重疊,點(diǎn)C(6,8)與點(diǎn)D(m,n)重疊.
(1)求直線l的方程;
(2)求m+n的值;
(3)直線l上是否存在一點(diǎn)P,使得||PB|-|PC||存在最大值,如果存在,請(qǐng)求出最大值,以及此時(shí)點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.各項(xiàng)均為正數(shù)的等差數(shù)列{an}前n項(xiàng)和為Sn,首項(xiàng)a1=3,數(shù)列{bn} 為等比數(shù)列,首項(xiàng)b1=1,且b2S2=64,b3S3=960.
(Ⅰ)求an和bn
(Ⅱ)設(shè)f(n)=$\frac{{a}_{n}-1}{{S}_{n}+100}$(n∈N*),求f(n)最大值及相應(yīng)的n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)α、β、γ為三個(gè)不同的平面,m、n是兩條不同的直線,在命題“α∩β=m,n?γ,且________,則m∥n”中的橫線處填入下列三組條件中的一組,使該命題為真命題.
①α∥γ,n?β;②m∥γ,n∥β;③n∥β,m?γ.可以填入的條件有( 。
A.①或③B.①或②C.②或③D.①或②或③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知集合A={y|y=log2x,x≥4},B={y|y=($\frac{1}{2}$)x,-1≤x≤0}.
(1)求A∩B;
(2)若集合C={x|a≤x≤2a-1},且C∪B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知集合A={x|$\frac{1}{3}$≤($\frac{1}{3}$)x-1≤9},集合B={x|log2x<3},集合C={x|x2-(2a+1)x+a2+a≤0},U=R
(1)求集合A∩B,(∁UB)∪A;
(2)若A∪C=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若f(x)=$\frac{x^2-1}{\sqrt{x+1}}$,g(x)=$\frac{\sqrt{x+1}}{x-1}$,則f(x)•g(x)=x+1(x>-1且x≠1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的體積為(  )
A.$\frac{\sqrt{3}}{3}$B.$\sqrt{3}$C.$\frac{2\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案