考點(diǎn):數(shù)列的求和
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(1)由2S
n=a
n+1+1-2
n+1,n∈N
+,取n=1,2,可得2a
1=a
2-3,2(a
1+a
2)=a
3-7.由a
1,a
2+5,a
3為等差數(shù)列,可得2(a
2+5)=a
1+a
3.聯(lián)立解得a
1=1.
當(dāng)n≥2時(shí),
2Sn-1=an+1-2n,k可得2a
n=2S
n-2S
n-1,
an+1+2n+1=3(an+2n),再利用等比數(shù)列的通項(xiàng)公式即可得出.
(2)當(dāng)n≥4時(shí),
=
<
,利用“放縮法”、等比數(shù)列的前n項(xiàng)和公式即可得出.
解答:
(1)解:∵2S
n=a
n+1+1-2
n+1,n∈N
+,
取n=1,2,可得2a
1=a
2-3,2(a
1+a
2)=a
3-7.
∵a
1,a
2+5,a
3為等差數(shù)列,
∴2(a
2+5)=a
1+a
3.
聯(lián)立
| 2a1=a2-3 | 2(a1+a2)=a3-7 | 2(a2+5)=a1+a3 |
| |
,解得
.
當(dāng)n≥2時(shí),
2Sn-1=an+1-2n,
∴2a
n=2S
n-2S
n-1=a
n+1+1-2
n+1-
(an+1-2n),
化為
an+1=3an+2n,
變形為
an+1+2n+1=3(an+2n),
∴數(shù)列{a
n}是等比數(shù)列,首項(xiàng)為1,公比為3.
∴
an+2n=3n,
∴
an=3n-2n.
(2)證明:∵當(dāng)n≥4時(shí),
=
<
,
∴
+
+…+
=1+
+
+
<1+
+
+
<
.
∴
+
+…+
<
.
點(diǎn)評(píng):本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、遞推式的應(yīng)用、“放縮法”,考查了推理能力與計(jì)算能力,屬于中檔題.