【題目】已知等差數(shù)列滿(mǎn)足,.
(1)求的通項(xiàng)公式;
(2)設(shè)等比數(shù)列滿(mǎn)足,,問(wèn):與數(shù)列的第幾項(xiàng)相等?
(3)若數(shù)列,求數(shù)列的前項(xiàng)和.
【答案】(1); (2); (3).
【解析】
(1)由,求得公差,再由,求得,結(jié)合等差數(shù)列的通項(xiàng)公式,即可求解;
(2)由,,求得等比數(shù)列的首項(xiàng)和公比,利用等比數(shù)列的通項(xiàng)公式求得,結(jié)合(1),即可求解;
(3)由(1)、(2)求得,利用等差數(shù)列和等比數(shù)列的前n項(xiàng)和公式,即可求解.
(1)設(shè)等差數(shù)列的公差為,
因?yàn)?/span>,所以,
又因?yàn)?/span>,即,解得,
所以數(shù)列的通項(xiàng)公式為.
(2)設(shè)等比數(shù)列的公比為,
因?yàn)?/span>,,所以,解得,
所以,則,
令,解得,即是數(shù)列的第63項(xiàng)相等.
(3)由(1)、(2)可知,,所以,
所以數(shù)列的前項(xiàng)和
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是甲、乙兩位同學(xué)高三上學(xué)期的5次聯(lián)考數(shù)學(xué)成績(jī),現(xiàn)在只知其從第1次到第5次分?jǐn)?shù)所在區(qū)間段分布的條形圖(從左至右依次為第1至第5次),則從圖中可以讀出一定正確的信息是( )
A.甲同學(xué)的成績(jī)的平均數(shù)大于乙同學(xué)的成績(jī)的平均數(shù)
B.甲同學(xué)的成績(jī)的方差大于乙同學(xué)的成績(jī)的方差
C.甲同學(xué)的成績(jī)的極差小于乙同學(xué)的成績(jī)的極差
D.甲同學(xué)的成績(jī)的中位數(shù)小于乙同學(xué)的成績(jī)的中位數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2015年我國(guó)將加快階梯水價(jià)推行,原則是“;、建機(jī)制、促節(jié)約”,其中“;”是指保證至少80%的居民用戶(hù)用水價(jià)格不變.為響應(yīng)國(guó)家政策,制定合理的階梯用水價(jià)格,某城市采用簡(jiǎn)單隨機(jī)抽樣的方法分別從郊區(qū)和城區(qū)抽取5戶(hù)和20戶(hù)居民的年人均用水量進(jìn)行調(diào)研,抽取的數(shù)據(jù)的莖葉圖如下(單位:噸):
(1)在郊區(qū)的這5戶(hù)居民中隨機(jī)抽取2戶(hù),求其年人均用水量都不超過(guò)30噸的概率;
(2)設(shè)該城市郊區(qū)和城區(qū)的居民戶(hù)數(shù)比為,現(xiàn)將年人均用水量不超過(guò)30噸的用戶(hù)定義為第一階梯用戶(hù),并保證這一梯次的居民用戶(hù)用水價(jià)格保持不變.試根據(jù)樣本估計(jì)總體的思想,分析此方案是否符合國(guó)家“;”政策.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從0、2、4中取一個(gè)數(shù)字,從1、3、5中取兩個(gè)數(shù)字,組成無(wú)重復(fù)數(shù)字的三位數(shù),則所有不同的三位數(shù)的個(gè)數(shù)是______(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合M=,對(duì)它的非空子集A,可將A中每個(gè)元素K都乘以再求和(如A=,可求得和為),則對(duì)M的所有非空子集,這些和的總和是__________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為 (t為參數(shù)),直線(xiàn)的參數(shù)方程為 (為參數(shù)).設(shè)與的交點(diǎn)為,當(dāng)變化時(shí),的軌跡為曲線(xiàn)
(1)寫(xiě)出的普通方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,設(shè),為與的交點(diǎn),求的極徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線(xiàn)的焦點(diǎn)為,過(guò)點(diǎn)的直線(xiàn)與拋物線(xiàn)相交于兩點(diǎn),與拋物線(xiàn)的準(zhǔn)線(xiàn)相交于點(diǎn), ,則與的面積之比__________.
【答案】
【解析】
由題意可得拋物線(xiàn)的焦點(diǎn)的坐標(biāo)為,準(zhǔn)線(xiàn)方程為。
如圖,設(shè),過(guò)A,B分別向拋物線(xiàn)的準(zhǔn)線(xiàn)作垂線(xiàn),垂足分別為E,N,則
,解得。
把代入拋物線(xiàn),解得。
∴直線(xiàn)AB經(jīng)過(guò)點(diǎn)與點(diǎn),
故直線(xiàn)AB的方程為,代入拋物線(xiàn)方程解得。
∴。
在中, ,
∴
∴。答案:
點(diǎn)睛:
在解決與拋物線(xiàn)有關(guān)的問(wèn)題時(shí),要注意拋物線(xiàn)的定義在解題中的應(yīng)用。拋物線(xiàn)定義有兩種用途:一是當(dāng)已知曲線(xiàn)是拋物線(xiàn)時(shí),拋物線(xiàn)上的點(diǎn)M滿(mǎn)足定義,它到準(zhǔn)線(xiàn)的距離為d,則|MF|=d,可解決有關(guān)距離、最值、弦長(zhǎng)等問(wèn)題;二是利用動(dòng)點(diǎn)滿(mǎn)足的幾何條件符合拋物線(xiàn)的定義,從而得到動(dòng)點(diǎn)的軌跡是拋物線(xiàn).
【題型】填空題
【結(jié)束】
17
【題目】已知三個(gè)內(nèi)角所對(duì)的邊分別是,若.
(1)求角;
(2)若的外接圓半徑為2,求周長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線(xiàn)=1(a>0,b>0)的右焦點(diǎn)為F(c,0).
(1)若雙曲線(xiàn)的一條漸近線(xiàn)方程為y=x且c=2,求雙曲線(xiàn)的方程;
(2)以原點(diǎn)O為圓心,c為半徑作圓,該圓與雙曲線(xiàn)在第一象限的交點(diǎn)為A,過(guò)A作圓的切線(xiàn),斜率為-,求雙曲線(xiàn)的離心率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com