已知函數(shù),設(shè)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間
(Ⅱ)若以函數(shù)圖象上任意一點(diǎn)為切點(diǎn)的切線的斜率恒成立,求實(shí)數(shù)的最小值
(Ⅲ)是否存在實(shí)數(shù),使得函數(shù)的圖象與函數(shù)的圖象恰有四個(gè)不同交點(diǎn)?若存在,求出實(shí)數(shù)的取值范圍;若不存在,說明理由。
(Ⅰ) 的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(Ⅱ)實(shí)數(shù)的最小值;(Ⅲ)當(dāng)時(shí),的圖像與的圖像恰有四個(gè)不同交點(diǎn).
解析試題分析:(I)求函數(shù)的單調(diào)區(qū)間,首先求出的解析式,得,求函數(shù)的單調(diào)區(qū)間,可用定義,也可用導(dǎo)數(shù)法,由于本題含有對(duì)數(shù)函數(shù),可通過求導(dǎo)來求,對(duì)求導(dǎo)得,分別求出與的范圍,從而求出的單調(diào)區(qū)間;(II)若以函數(shù)圖象上任意一點(diǎn)為切點(diǎn)的切線的斜率恒成立,求實(shí)數(shù)的最小值,可利用導(dǎo)數(shù)的幾何意義表示出切線的斜率,根據(jù)恒成立,將分離出來得,即大于等于的最大值即可,這樣求出的范圍,從而得到的最小值;(III)函數(shù)的圖象與的圖象有四個(gè)不同的交點(diǎn),即方程有四個(gè)不同的根,分離出后,轉(zhuǎn)化成新函數(shù)的極大值和極小值問題,利用圖像即可求出實(shí)數(shù)的取值范圍.
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù),且是函數(shù)的一個(gè)極小值點(diǎn).
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù),
科目:高中數(shù)學(xué)
來源:
題型:解答題
設(shè)函數(shù),曲線通過點(diǎn)(0,2a+3),且在處的切線垂直于y軸.
科目:高中數(shù)學(xué)
來源:
題型:解答題
(本小題13分) 已知函數(shù)(為自然對(duì)數(shù)的底數(shù))。
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知.
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù) .
百度致信 - 練習(xí)冊(cè)列表 - 試題列表 湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
試題解析:(Ⅰ)F(x)=f(x)+g(x)=lnx+(x>0), ==
∵a>0,由FF'(x)>0Þx∈(a,+∞),∴F(x)在(a,+∞)上是增函數(shù).
由FF'(x)<0Þx∈(0,a),∴F(x)在(0,a)上是減函數(shù).
∴F(x)的單調(diào)遞減區(qū)間為(0,a),單調(diào)遞增區(qū)間為(a,+∞).
(Ⅱ)由FF'(x)= (0<x≤3)得
k= FF'(x0)= ≤(0<x0≤3)恒成立Ûa≥-x02+x0恒成立.
∵當(dāng)x0=1時(shí),-x02+x0取得最大值
∴a≥,a的最小值為.
(Ⅲ)若y=g()+m-1=x2+m-的圖像與y=f(1+x2)=ln(x2+1)的圖像恰有四個(gè)不同交點(diǎn),即x2+m-=ln(x2+1)有四個(gè)不同的根,亦即m=ln(x2+1)-x2+有四個(gè)不同的根.令= ln(x2+1)-x2+.
則GF'(x)=-x==
當(dāng)x變化時(shí)GF'(x)、G(x)的變化情況如下表: (-¥,-1) (-1,0) (0,1) (1,+¥) GF'(x)的符號(hào)
年級(jí)
高中課程
年級(jí)
初中課程
高一
高一免費(fèi)課程推薦!
初一
初一免費(fèi)課程推薦!
高二
高二免費(fèi)課程推薦!
初二
初二免費(fèi)課程推薦!
高三
高三免費(fèi)課程推薦!
初三
初三免費(fèi)課程推薦!
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)求在區(qū)間上的最大值和最小值.
(Ⅰ)當(dāng)a=4時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)g(x)在區(qū)間上的最小值;
(Ⅲ)若存在,使方程成立,求實(shí)數(shù)a的取值范圍(其中e=2.71828是自然對(duì)數(shù)的底數(shù))
(I)用a分別表示b和c;
(II)當(dāng)bc取得最大值時(shí),寫出的解析式;
(III)在(II)的條件下,g(x)滿足,求g(x)的最大值及相應(yīng)x值.
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)是否存在實(shí)數(shù),使函數(shù)在上是單調(diào)增函數(shù)?若存在,求出的值;若不存在,請(qǐng)說明理由。恒成立,則,又,
(1)當(dāng)時(shí),求上的值域;
(2)求函數(shù)在上的最小值;
(3)證明: 對(duì)一切,都有成立
(Ⅰ)時(shí),求在處的切線方程;
(Ⅱ)若對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)當(dāng)時(shí),設(shè)函數(shù),若,求證:.
(Ⅰ)若函數(shù)在區(qū)間其中上存在極值,求實(shí)數(shù)的取值范圍;
(Ⅱ)如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
版權(quán)聲明:本站所有文章,圖片來源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無意侵犯版權(quán),如有侵權(quán),請(qǐng)作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號(hào): 滬ICP備07509807號(hào)-10 鄂公網(wǎng)安備42018502000812號(hào)