10.如圖,已知$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,$\overrightarrow{BC}$=4$\overrightarrow{BD}$,$\overrightarrow{CA}$=3$\overrightarrow{CE}$,則$\overrightarrow{DE}$=( 。
A.$\frac{3}{4}$$\overrightarrow$-$\frac{1}{3}$$\overrightarrow{a}$B.$\frac{5}{12}$$\overrightarrow$-$\frac{3}{4}$$\overrightarrow{a}$C.$\frac{3}{4}$$\overrightarrow{a}$-$\frac{1}{3}$$\overrightarrow$D.$\frac{5}{12}$$\overrightarrow{a}$-$\frac{3}{4}$$\overrightarrow$

分析 根據(jù)向量的三角形法和加減的幾何意義即可求出.

解答 解:∵$\overrightarrow{BC}$=4$\overrightarrow{BD}$,
∴$\overrightarrow{DC}$=$\frac{3}{4}$$\overrightarrow{BC}$=$\frac{3}{4}$($\overrightarrow{AC}$-$\overrightarrow{AB}$)
∴$\overrightarrow{DE}$=$\overrightarrow{DC}$+$\overrightarrow{CE}$=$\frac{3}{4}$($\overrightarrow{AC}$-$\overrightarrow{AB}$)+$\frac{1}{3}$$\overrightarrow{CA}$=($\frac{3}{4}$-$\frac{1}{3}$)$\overrightarrow{AC}$-$\frac{3}{4}$$\overrightarrow{AB}$=$\frac{5}{12}$$\overrightarrow$-$\frac{3}{4}$$\overrightarrow{a}$,
故選:B

點評 本題考查了向量的三角形法和向量的數(shù)乘運算,屬于基礎題

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.執(zhí)行如圖所示的程序框圖,如果輸入a=6,b=2,則輸出的S=(  )
A.30B.120C.360D.720

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在國家批復成立江北新區(qū)后,南京市政府規(guī)劃在新區(qū)內(nèi)的一條形地塊上新建一個全民健身中心,規(guī)劃區(qū)域為四邊形ABCD,如圖OP∥AQ,OA⊥AQ,點B在線段OA上,點C、D分別在射線OP與AQ上,且A和C關于BD對稱.已知OA=2,
(1)若OC=1,求BD的長;
(2)問點C在何處時,規(guī)劃區(qū)域的面積最。孔钚≈凳嵌嗌?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.四面體ABCD四個面重心分別為E、F、G、H,則四面體EFGH表面積與四面體ABCD表面積的比值為1:9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.關于某設備的使用年限x和所支出的維修費用y(萬元)有如下的統(tǒng)計資料
x1234
y0.511.53
試用最小二乘法求出y關于x的線性回歸方程
參考公式:
用最小二乘法求線性回歸方程系數(shù)公式:$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為e=$\frac{1}{2}$,過點($\sqrt{3}$,$\frac{\sqrt{3}}{2}$)
(I)求橢圓C的方程;
(II)過A(-a,0)且互相垂直的兩條直線l1、l2與橢圓C的另一個交點分別為P、Q.問:直線PQ是否經(jīng)過定點?若是,求出該定點;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知圓的方程為 (x-1)2+(y-1)2=9,P(2,2)是該圓內(nèi)一點,過點P的最長弦和最短弦分別為AC和BD,則AC•BD=(  )
A.$6\sqrt{5}$B.$8\sqrt{5}$C.$10\sqrt{5}$D.2$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.執(zhí)行如圖的程序框圖,如果輸入的t=0.01,則輸出的n=(  )
A.5B.7C.10D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若函數(shù)f(x)=cos(2x+φ)是奇函數(shù),則φ可取一個值為( 。
A.B.-$\frac{π}{2}$C.$\frac{π}{4}$D.

查看答案和解析>>

同步練習冊答案