17.若函數(shù)f(x)=(x-a)(x+3)為偶函數(shù),則f(2)=-5.

分析 根據(jù)偶函數(shù)f(x)的定義域為R,則?x∈R,都有f(-x)=f(x),建立等式,解之求出a,即可求出f(2).

解答 解:因為函數(shù)f(x)=(x-a)(x+3)是偶函數(shù),
所以?x∈R,都有f(-x)=f(x),
所以?x∈R,都有(-x-a)•(-x+3)=(x-a)(x+3),
即x2+(a-3)x-3a=x2-(a-3)x-3a,
所以a=3,
所以f(2)=(2-3)(2+3)=-5.
故答案為:-5.

點評 本題主要考查了函數(shù)奇偶性的性質(zhì),同時考查了運算求解的能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.已知線段AB的中點為C,則$\overrightarrow{AB}$-$\overrightarrow{BC}$=( 。
A.3$\overrightarrow{AC}$B.$\overrightarrow{AC}$C.$\overrightarrow{CA}$D.3$\overrightarrow{CA}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知復數(shù)z=$\frac{2+ai}{1+2i}$,其中a為整數(shù),且z在復平面對應的點在第四象限,則a的最大值等于( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知區(qū)域Ω={(x,y)||x|≤$\sqrt{2}$,0≤y≤$\sqrt{2}$},由直線x=-$\frac{π}{3}$,x=$\frac{π}{3}$,曲線y=cosx與x軸圍成的封閉圖象所表示的區(qū)域記為A,若在區(qū)域Ω內(nèi)隨機取一點P,則點P在區(qū)域A的概率為( 。
A.$\frac{\sqrt{2}}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{4}$D.$\frac{\sqrt{6}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設集合U={-2,-1,0,1,2},A={x|x2-x-2=0},則∁UA=( 。
A.{-2,1}B.{-1,2}C.{-2,0,1}D.{-2,-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.在△ABC中,若a=2,∠C=$\frac{π}{3}$,S△ABC=2$\sqrt{3}$,則c=( 。
A.$\sqrt{3}$B.2C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1-{x}^{3},x>0}\\{{2}^{x},x≤0}\end{array}\right.$,則f(f(-1))=$\frac{7}{8}$,f(x)的值域為(-∞,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若函數(shù)f(x)=-x3+ax2+bx-7在R上單調(diào)遞減,則實數(shù)a,b一定滿足條件( 。
A.a2+3b≤0B.a2+3b<0C.a2+3b>0D.a2+3b=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.方程$\frac{x^2}{m-2}+\frac{y^2}{m+3}=1$表示雙曲線的一個充分不必要條件是( 。
A.-3<m<0B.-3<m<2C.-3<m<4D.-1<m<3

查看答案和解析>>

同步練習冊答案