【題目】如圖,已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,且過點(diǎn)(2,4),圓,過圓心的直線l與拋物線和圓分別交于P,Q,M,N,則的最小值為________

【答案】42

【解析】

設(shè)拋物線的標(biāo)準(zhǔn)方程,將點(diǎn)代入拋物線方程,求得拋物線方程,由拋物線的焦點(diǎn)弦性質(zhì),求得,根據(jù)拋物線的性質(zhì)及基本不等式,即可求得答案.

設(shè)拋物線的方程:y2=2pxp>0),則16=2p×2,則2p=8,

∴拋物線的標(biāo)準(zhǔn)方程:y2=8x,焦點(diǎn)坐標(biāo)F(2,0),

由直線PQ過拋物線的焦點(diǎn),則,

C2:(x﹣2)2+y2=1圓心為(2,0),半徑1,

|PN|+9|QM|=|PF|+1+9(|QF|+1)

=|PF|+9|QF|+10=2(|PF|+9|QF|)×()+10

=2(10)+10≥2(10+2)+10=42,

∴|PN|+9|QM|的最小值為42,

故答案為42

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(2x-x2)ex-1.

(1)求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若對(duì)任意x≥1,都有f(x)-mx-1+m≤0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)時(shí),,

)求,,

)猜想的關(guān)系,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校研究性學(xué)習(xí)小組對(duì)該校高三學(xué)生視力情況進(jìn)行調(diào)查,在高三的全體1000名學(xué)生中隨機(jī)抽取了100名學(xué)生的體檢表,得到如圖的頻率分布直方圖(圖1.

1)若直方圖中后四組的頻數(shù)成等差數(shù)列,試估計(jì)全年級(jí)視力在5.0以下的人數(shù);

2)學(xué)習(xí)小組成員發(fā)現(xiàn),學(xué)習(xí)成績(jī)突出的學(xué)生,近視的比較多,為了研究學(xué)生的視力與學(xué)習(xí)成績(jī)是否有關(guān)系,對(duì)年級(jí)名次在150名和9511000名的學(xué)生進(jìn)行了調(diào)查,得到圖2中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為視力與學(xué)習(xí)成績(jī)有關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),若曲線在點(diǎn) 處的切線方程為.

(Ⅰ)求的解析式;

(Ⅱ)求證:在曲線上任意一點(diǎn)處的切線與直線所圍成的三角形面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】先后2次拋擲一次骰子,將得到的點(diǎn)數(shù)分別記為

1)求直線與圓相切的概率;

2)將,4的值分別作為三條線段的長(zhǎng),求這三條線段能圍成等腰三角形(含等邊三角形)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市創(chuàng)業(yè)園區(qū)新引進(jìn)一家生產(chǎn)環(huán)保產(chǎn)品的公司,已知該環(huán)保產(chǎn)品每售出1盒的利潤(rùn)為0.3萬元,當(dāng)月未售出的環(huán)保產(chǎn)品,每盒虧損0.12萬元.根據(jù)統(tǒng)計(jì)資料,該環(huán)保產(chǎn)品的市場(chǎng)月需求量的頻率分布直方圖如圖所示.

1)若該環(huán)保產(chǎn)品的月進(jìn)貨量為160盒,以(單位:盒,)表示該產(chǎn)品一個(gè)月內(nèi)的市場(chǎng)需求量,(單位:萬元)表示該公司生產(chǎn)該環(huán)保產(chǎn)品的月利潤(rùn).

①將表示為的函數(shù);

②根據(jù)頻率分布直方圖估計(jì)利潤(rùn)不少于39.6萬元的概率.

2)在頻率分布直方圖的月需求量分組中,以各組的區(qū)間中點(diǎn)值代表該組的月需求量,當(dāng)月進(jìn)貨量為158箱時(shí),寫出月利潤(rùn)(單位:萬元)的所有可能值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中點(diǎn)。

求證:(1)PA∥平面BDE ;

(2)平面PAC平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為.

(1)若拋物線的焦點(diǎn)到準(zhǔn)線的距離為4,直線,求直線截拋物線所得的弦長(zhǎng);

(2)過點(diǎn)的直線交拋物線兩點(diǎn),過點(diǎn)作拋物線的切線,兩切線相交于點(diǎn),若分別表示直線與直線的斜率,且,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案