15.已知集合M={x|x2-x-2<0},P={x|x≤a},若M∩P=∅,則實數(shù)a的取值范圍是(  )
A.{a|a<-1}B.{a|a≥2}C.{a|-1<a<2}D.{a|a≤-1}

分析 化簡集合M,根據(jù)M∩P=∅求出a的取值范圍.

解答 解:集合M={x|x2-x-2<0}={x|-1<x<2},
P={x|x≤a},
當M∩P=∅時,a≤-1,
所以實數(shù)a的取值范圍是{a|a≤1}.
故選:D.

點評 本題考查了集合的化簡與運算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}的前n項和為Sn滿足:Sn=$\frac{3}{2}$an+n-3.
(1)求證:數(shù)列{an-1}是等比數(shù)列.
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在(1+x)+(1+x)2+(1+x)3+…+(1+x)2011的展開式中,含x3的項的系數(shù)為(  )
A.$C_{2011}^3$B.$C_{2011}^4$C.$C_{2012}^3$D.$C_{2012}^4$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.若不等式ax2+5x-2>0的解集是$\left\{{\left.x\right|\frac{2}{3}<x<1}\right\}$,
(1)求a的值;
(2)求不等式ax2-5x-1>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.用量詞符號“?”或“?”表示下列命題:
(1)不論m取何實數(shù),方程x2+x-m=0必有實數(shù)根:?m∈R,方程x2+x-m=0必有實數(shù)根;
(2)存在一個有理數(shù)x0,使得x02=8:?x0∈Q,使得x02=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)集合M={x∈N*|x<9},S1,S2,…,Sk都是M的含有兩個元素的子集,且滿足:對任意的Si={ai,bi}(i∈{1,2,3,…,k}),總存在Sj={aj,bj}(j≠i,j∈{1,2,3,…,k})使得$max\left\{{\frac{a_j}{b_j},\frac{b_j}{a_j}}\right\}=max\left\{{\frac{a_i}{b_i},\frac{b_i}{a_i}}\right\}$,(max{x,y}表示兩個數(shù)x,y中的較大者),則k的最大值是( 。
A.10B.11C.12D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知圓C:x2+y2=9,點A(-5,0),直線l:x-2y=0.
(1)求與圓C相切,且與直線l垂直的直線方程;
(2)在x軸上是否存在定點B(不同于點A),使得對于圓C上任一點P,都有$\frac{|PB|}{|PA|}$為常數(shù)?若存在,試求所有滿足條件的點B的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.從所給的四個選項中,選擇最合適的一個填入問號處,使之呈現(xiàn)一定的規(guī)律性( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x+2(x<1)}\\{-x-1(x≥1)}\end{array}\right.$,若f(2-x)>f(x),則x的取值范圍是(  )
A.(-1,+∞)B.(-∞,-1)C.(1,+∞)D.(-∞,1)

查看答案和解析>>

同步練習(xí)冊答案