已知數(shù)列{an}的前n項(xiàng)和為Sn,Sn=2an-2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2an,cn=
1
bnbn+1
,求數(shù)列{cn}的前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:(1)首先利用遞推關(guān)系求出數(shù)列的通項(xiàng)公式,
(2)進(jìn)一步利用求出新數(shù)列的通項(xiàng)公式,最后利用裂項(xiàng)相消法求數(shù)列的和.
解答: 解:(1)當(dāng)n=1時(shí),a1=2,
當(dāng)n≥2時(shí),an=Sn-Sn-1=2an-2-(2an-1-2)
=2an-2an-1
∴an=2an-1
即  
an
an-1
=2

∴數(shù)列{an}為以2為公比的等比數(shù)列,
∴an=2n.
(2)b=log2an=n
cn=
1
bnbn+1
=
1
n(n+1)
=
1
n
-
1
n+1

Tn=c1+c2+…+cn=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1

=1-
1
n+1
=
n
n+1
點(diǎn)評(píng):本題考查的知識(shí)要點(diǎn):利用遞推關(guān)系式求數(shù)列的通項(xiàng)公式,利用裂項(xiàng)相消法求數(shù)列的和.屬于基礎(chǔ)題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)求函數(shù)y=
1
2-|x|
+
x2-1
的定義域;
(2)求函數(shù)y=-x2+4x-2,x∈[0,3)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在x軸上一動(dòng)點(diǎn)P到A(0,2),B(1,1)距離之和的最小值為( 。
A、
10
B、
2
C、2+
2
D、1+
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}的各項(xiàng)均為正數(shù),且a5a6+a3a8=16,則log2a1+log2a2+…+log2a10的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x-3)2+(y-4)2=4,直線l過(guò)定點(diǎn)A(1,0).
(1)若l與圓C相切,求l的方程;
(2)若l與圓C相交于P、Q兩點(diǎn),若|PQ|=2
2
,求此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將函數(shù)y=sin(4x+φ)的圖象向左平移
π
4
個(gè)單位,得到新函數(shù)的一條對(duì)稱軸為x=
π
16
,則φ的值不可能是( 。
A、-
4
B、
π
4
C、
4
D、
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)在定義域(-4,6)內(nèi)可導(dǎo),其圖象如圖所示,記y=f(x)的導(dǎo)函數(shù)為y=f′(x),則滿足f′(x)>0的實(shí)數(shù)x的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα=2,則
sinα+cosα
cosα-sinα
的值為( 。
A、-3B、3C、-2D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合M={y|y=2sinx,x∈[-5,5],N={x|y=log2(x-1)},則M∩N=( 。
A、{x|1<x<5}
B、{x|1<x≤0}
C、{x|-2≤x≤0}
D、{x|1<x≤2}

查看答案和解析>>

同步練習(xí)冊(cè)答案