A. | f(x)=$\root{3}{{x}^{3}}$與$g(x)=\sqrt{x^2}$ | B. | f(x)=|x|與$g(x)={({\sqrt{x}})^2}$ | ||
C. | $f(x)=\sqrt{1-x}×\sqrt{1+x}$與$g(x)=\sqrt{1-{x^2}}$ | D. | f(x)=x0與g(x)=1 |
分析 根據(jù)兩個(gè)函數(shù)是同一個(gè)函數(shù)的定義,函數(shù)的三要素均相等,或兩個(gè)函數(shù)的圖象一致,根據(jù)函數(shù)的定義域與函數(shù)的解析式一致時(shí),函數(shù)的值域一定相同,我們逐一分析四個(gè)答案中兩個(gè)函數(shù)的定義域和解析式是否一致,即可得到答案.
解答 解:對(duì)于A:f(x)=x,g(x)=|x|,不是同一函數(shù),
對(duì)于B:f(x)的定義域是R,g(x)的定義域是[0,+∞),不是同一函數(shù),
對(duì)于C:f(x)=g(x),表達(dá)式相同,定義域都是[-1,1],是同一函數(shù),
對(duì)于D:f(x)的定義域是{x|x≠0},g(x)的定義域是R,不是同一函數(shù),
故選:C.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是判斷兩個(gè)函數(shù)是否為同一函數(shù),熟練掌握判斷兩個(gè)函數(shù)是否為同一函數(shù)的方法,正確理解兩個(gè)函數(shù)表示同一函數(shù)的概念是解答本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | 3 | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,1) | B. | [-1,1] | C. | (-1,1] | D. | [-1,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0$<\frac{r}{L}<\frac{1}{2}$ | B. | $\frac{1}{2}≤\frac{r}{L}<1$ | C. | 0$<\frac{r}{L}<\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{2}}{2}≤\frac{r}{L}<1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{12}$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{12}$ | D. | $\frac{7π}{12}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com