9.設x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}&{\;}\\{x+y≤2}&{\;}\\{y≥0}&{\;}\end{array}\right.$,當且僅當x=y=1時,z=ax+y取得最大值,則實數(shù)a的取值范圍是(  )
A.(-1,1)B.(-∞,1)C.(-∞,-1)D.(-∞,-1)∪(1,+∞)

分析 畫出約束條件的可行域,利用目標函數(shù)的最值,判斷a的范圍即可.

解答 解:x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}&{\;}\\{x+y≤2}&{\;}\\{y≥0}&{\;}\end{array}\right.$的可行域如圖:
當且僅當x=y=1時,z=ax+y取得最大值,即z=ax+y經(jīng)過(1,1)時,z取得最大值,直線化為y=-ax+z,z是幾何意義是直線在y軸上的截距,如圖,直線的斜率滿足:(kAB,kAO
a∈(-1,1).
故選:A.

點評 本題主要考查線性規(guī)劃的應用,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.已知二次函數(shù)f(x)=ax2+bx+c,其中常數(shù)a,b,c∈R.
(1)若f(3)=f(-1)=-5,且f(x)的最大值是3,求函數(shù)f(x)的解析式;
(2)a=1,若對任意的x1,x2∈[-1,1],有|f(x1)-f(x2)|≤4,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知直線2kx-y+1=0與橢圓$\frac{x^2}{9}+\frac{y^2}{m}=1$恒有公共點,則實數(shù)m的取值范圍( 。
A.(1,9]B.[1,+∞)C.[1,9)∪(9,+∞)D.(9,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若直線y=x+m與曲線$y=\sqrt{1-{x^2}}$有兩個不同的交點,則實數(shù)m的取值范圍為( 。
A.$(-\sqrt{2},\sqrt{2})$B.$(1,\sqrt{2})$C.$(-1,\sqrt{2}]$D.$[1,\sqrt{2})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F,且$EF=\frac{{\sqrt{2}}}{2}$,則下列結(jié)論中正確的是①②③④.
①EF∥平面ABCD;
②平面ACF⊥平面BEF;
③三棱錐E-ABF的體積為定值;
④存在某個位置使得異面直線AE與BF成角30o

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.為了研究學生性別與是否喜歡數(shù)學課之間的關系,得到列聯(lián)表如下:
喜歡數(shù)學不喜歡數(shù)學總計
4080120
40140180
總計80220300
并經(jīng)計算:K2≈4.545
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
請判斷有( 。┌盐照J為性別與喜歡數(shù)學課有關.
A.5%B.99.9%C.99%D.95%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知向量$\overrightarrow a$=(-1,2),$\overrightarrow b$=(1,-2y),若$\overrightarrow a$∥$\overrightarrow b$,則 y 的值是1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知全集U={-1,0,1,2,3,4},且A∪B={1,2,3,4},A={2,3},則B∩(∁A)=( 。
A.{1,4}B.{1}C.{4}D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.經(jīng)過兩點(x1,y1),(x2,y2)的直線方程都可以表示為( 。
A.$\frac{x-{x}_{1}}{{x}_{2}-{x}_{1}}$=$\frac{y-{y}_{1}}{{y}_{2}-{y}_{1}}$B.$\frac{x-{x}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{y-{y}_{2}}{{y}_{1}-{y}_{2}}$
C.(y-y1)(x2-x1)=(x-x1)(y2-y1D.y-y1=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$

查看答案和解析>>

同步練習冊答案