【題目】在平面直角坐標(biāo)系中,設(shè)點,,(其中表示a、b中的較大數(shù))為、兩點的“切比雪夫距離”.
(1)若,Q為直線上動點,求P、Q兩點“切比雪夫距離”的最小值;
(2)定點,動點滿足,請求出P點所在的曲線所圍成圖形的面積.
【答案】(1);(2)
【解析】
(1)設(shè),可得,討論的大小,可得距離,再結(jié)合函數(shù)的性質(zhì)求最小值即可;
(2)運用分段函數(shù)的形式求得,分析各段與不等式表示的平面區(qū)域的圖形,即可求得面積.
解:(1)設(shè),可得,
由,解得,即有,則當(dāng)時,取最小值;
由,解得或,即有,即,
綜上可得:P、Q兩點“切比雪夫距離”的最小值為;
(2)由題意可得 ,
當(dāng),即有,
則圍成的圖形為關(guān)于點對稱的三角形區(qū)域,
當(dāng),即有,
則圍成的圖形為關(guān)于點對稱的三角形區(qū)域,
綜上可得,P點所在的曲線所圍成圖形為邊長為的正方形區(qū)域,則該區(qū)域面積為,
故P點所在的曲線所圍成圖形的面積為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,曲線C由部分橢圓C1:+=1(a>b>0,y≥0)和部分拋物線C2:y=-x2+1(y≤0)連接而成,C1與C2的公共點為A,B,其中C1所在橢圓的離心率為.
(1)求a,b的值;
(2)過點B的直線l與C1,C2分別交于點P,Q(P,Q,A,B中任意兩點均不重合),若AP⊥AQ,求直線l
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的焦距為,短半軸的長為2,過點P(-2,1)且斜率為1的直線l與橢圓C交于A,B兩點.
(1)求橢圓C的方程;
(2)求弦AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生在開學(xué)季準(zhǔn)備銷售一種文具套盒進(jìn)行試創(chuàng)業(yè),在一個開學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利潤50元;未售出的產(chǎn)品,每盒虧損30元根據(jù)歷史資料,得到開學(xué)季市場需求量的頻率分布直方圖,如圖所示,該同學(xué)為這個開學(xué)季購進(jìn)了160盒該產(chǎn)品,以單位:盒,表示這個開學(xué)季內(nèi)的市場需求量,單位:元表示這個開學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤
根據(jù)直方圖估計這個開學(xué)季內(nèi)市場需求量x的平均數(shù)和眾數(shù);
將y表示為x的函數(shù);
根據(jù)直方圖估計利潤不少于4800元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的離心率為,右準(zhǔn)線方程為,、分別是橢圓的左、右頂點,過右焦點且斜率為的直線與橢圓相交于,兩點.
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)記、的面積分別為、,若,求的值;
(3)設(shè)線段的中點為,直線與右準(zhǔn)線相交于點,記直線、、的斜率分別為、、,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】A地的天氣預(yù)報顯示,A地在今后的三天中,每一天有強(qiáng)濃霧的概率為,現(xiàn)用隨機(jī)模擬的方法估計這三天中至少有兩天有強(qiáng)濃霧的概率,先利用計算器產(chǎn)生之間整數(shù)值的隨機(jī)數(shù),并用0,1,2,3,4,5,6表示沒有強(qiáng)濃霧,用7,8,9表示有強(qiáng)濃霧,再以每3個隨機(jī)數(shù)作為一組,代表三天的天氣情況,產(chǎn)生了如下20組隨機(jī)數(shù):
402 978 191 925 273 842 812 479 569 683
231 357 394 027 506 588 730 113 537 779
則這三天中至少有兩天有強(qiáng)濃霧的概率近似為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為空間中三條互相平行且兩兩間的距離分別為4、5、6的直線,給出下列三個結(jié)論:
①存在使得是直角三角形;
②存在使得是等邊三角形;
③三條直線上存在四點使得四面體為在一個頂點處的三條棱兩兩互相垂直的四面體,其中,所有正確結(jié)論的個數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)一元二次方程Ax2+Bx+C=0,根據(jù)下列條件分別求解:
(1)若A=1,B、C是1枚骰子先后擲兩次出現(xiàn)的點數(shù),求方程有實數(shù)根的概率;
(2)若B=-A,C=A-3,且方程有實數(shù)根,求方程至少有一個非正實數(shù)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,點,
中恰有三點在橢圓上.
(1)求橢圓的方程;
(2)設(shè)是橢圓上的動點,由原點向圓引兩條切線,分別交橢圓于點,若直線的斜率存在,并記為,試問的面積是否為定值?若是,求出該值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com