【題目】已知函數(shù)的圖象的一條對(duì)稱軸為,則下列結(jié)論中正確的是( )
A.是最小正周期為的奇函數(shù)
B.是圖像的一個(gè)對(duì)稱中心
C.在上單調(diào)遞增
D.先將函數(shù)圖象上各點(diǎn)的縱坐標(biāo)縮短為原來的,然后把所得函數(shù)圖象再向左平移個(gè)單位長度,即可得到函數(shù)的圖象.
【答案】BD
【解析】
化簡函數(shù),將代入得函數(shù)最值,可求得,進(jìn)而可得,通過計(jì)算,可判斷A;通過計(jì)算,可判斷B;當(dāng)時(shí),,可得在上的單調(diào)性,可判斷C;通過振幅變換和平移變換,可判斷D.
解:
,
當(dāng)時(shí),取到最值,即
解得,
.
A:,故不是奇函數(shù),故A錯(cuò)誤;
B:,則是圖像的一個(gè)對(duì)稱中心,故B正確;
C:當(dāng)時(shí),,又在上先增后減,則在上先增后減,故C錯(cuò)誤;
D. 將函數(shù)圖象上各點(diǎn)的縱坐標(biāo)縮短為原來的,然后把所得函數(shù)圖象再向左平移個(gè)單位長度,得,故D正確.
故答案為:BD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,二面角中,,射線,分別在平面,內(nèi),點(diǎn)A在平面內(nèi)的射影恰好是點(diǎn)B,設(shè)二面角、與平面所成角、與平面所成角的大小分別為,則( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的短軸長為2,且兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)恰為一個(gè)正方形的四個(gè)頂點(diǎn),過E的左焦點(diǎn)F且不與坐標(biāo)軸垂直的直線l與E交于A,B兩點(diǎn),線段AB的垂直平分線m與x軸,y軸分別交于M,N兩點(diǎn),交線段AB于點(diǎn)C.
(1)求E的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),記的面積為,的面積為,且,當(dāng)時(shí),求l的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣tx+t.
(1)討論f(x)的單調(diào)性;
(2)當(dāng)t=2時(shí),方程f(x)=m﹣ax恰有兩個(gè)不相等的實(shí)數(shù)根x1,x2,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點(diǎn),離心率為
(1)求橢圓的方程;
(2)設(shè)直線與橢圓相交于,兩點(diǎn),若以,為鄰邊的平行四邊形的頂點(diǎn)在橢圓上,求證:平行四邊形的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,P是橢圓的上頂點(diǎn),過點(diǎn)P作斜率為的直線l交橢圓于另一點(diǎn)A,設(shè)點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為B
(1)求面積的最大值;
(2)設(shè)線段PB的中垂線與y軸交于點(diǎn)N,若點(diǎn)N在橢圓內(nèi)部,求斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,棱長為2的正方體中,點(diǎn)分別為棱的中點(diǎn),以為圓心,1為半徑,分別在面和面內(nèi)作弧和,并將兩弧各五等分,分點(diǎn)依次為、、、、、以及、、、、、.一只螞蟻欲從點(diǎn)出發(fā),沿正方體的表面爬行至,則其爬行的最短距離為________.參考數(shù)據(jù):;;)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高二某班共有45人,學(xué)號(hào)依次為1、2、3、…、45,現(xiàn)按學(xué)號(hào)用系統(tǒng)抽樣的辦法抽取一個(gè)容量為5的樣本,已知學(xué)號(hào)為6、24、33的同學(xué)在樣本中,那么樣本中還有兩個(gè)同學(xué)的學(xué)號(hào)應(yīng)為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com