【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù), ).

(1)求曲線的直角坐標(biāo)方程和直線的普通方程;

(2)若曲線上的動點(diǎn)到直線的最大距離為,求的值.

【答案】1直線的普通方程為: 2

【解析】試題分析:(1因?yàn)?/span>, 故可得曲線,直線的普通方程為: ;(2由點(diǎn)到直線的距離公式可得: , .

試題解析

1

因?yàn)?/span>, ,故可得曲線,

消去參數(shù)可得直線的普通方程為:

2由(1可得曲線的參數(shù)方程為: 為參數(shù))

由點(diǎn)到直線的距離公式可得:

據(jù)條件可知,由于,分如下情況:

時,由;

時,由;

綜上, .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)處有極小值,則實(shí)數(shù)等于__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對稱軸為坐標(biāo)軸的橢圓的焦點(diǎn)為,,上.

(1)求橢圓的方程;

(2)設(shè)不過原點(diǎn)的直線與橢圓交于,兩點(diǎn),且直線,,的斜率依次成等比數(shù)列,則當(dāng)的面積為時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知知矩形中,點(diǎn)是邊上的點(diǎn), 相交于點(diǎn),且,現(xiàn)將沿折起,如圖2,點(diǎn)的位置記為,此時.

(1)求證: ;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)在區(qū)間上的值域

(2)把函數(shù)圖象所有點(diǎn)的上橫坐標(biāo)縮短為原來的倍,再把所得的圖象向左平移個單位長度,再把所得的圖象向下平移1個單位長度,得到函數(shù), 若函數(shù)關(guān)于點(diǎn)對稱

i)求函數(shù)的解析式;

ii)求函數(shù)單調(diào)遞增區(qū)間及對稱軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng)時,證明:

(2)若關(guān)于的方程有且只有一個實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面四邊形ABCD為菱形,平面ABCD,EBC的中點(diǎn).

求證:平面PAD;

求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, , .

1)若的充分不必要條件,求實(shí)數(shù)的取值范圍;

(2)若,為真命題,“”為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)滿足以下兩個條件:①不等式的解集是②函數(shù)上的最小值是3.

(Ⅰ)求的解析式;

(Ⅱ)若點(diǎn)在函數(shù)的圖象上,且.

(。┣笞C:數(shù)列為等比數(shù)列

(ⅱ)令,是否存在正實(shí)數(shù),使不等式對于一切的恒成立?若存在,指出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案