【題目】已知橢圓的焦距為,且過點.
(1)求橢圓的方程;
(2)若不經(jīng)過點的直線與交于兩點,且直線與直線的斜率之和為,證明:直線的斜率為定值.
【答案】(1);(2)
【解析】試題分析:(1)由已知條件先求出橢圓的半焦距,再把代入橢圓方程,結(jié)合性質(zhì) ,求出 、 、,即可求出橢圓的方程;(2)設(shè)直線的方程為與橢圓的方程聯(lián)立,根據(jù)韋達定理及過兩點的斜率公式,利用直線的斜率之和為零可得,從而可得結(jié)果.
試題解析:(1)因為橢圓的焦距為,且過點,所以.因為,解得,所以橢圓的方程為.
(2)設(shè)點,則,由消去得,(*)則,因為,即,化簡得.即.(**)代入得,整理得,所以或.若,可得方程(*)的一個根為,不合題意,所以直線的斜率為定值,該值為.
【方法點晴】本題主要考查待定系數(shù)求橢圓方程以及直線與橢圓的位置關(guān)系和過兩點的斜率公式,屬于難題.用待定系數(shù)法求橢圓方程的一般步驟;①作判斷:根據(jù)條件判斷橢圓的焦點在軸上,還是在軸上,還是兩個坐標軸都有可能;②設(shè)方程:根據(jù)上述判斷設(shè)方程或 ;③找關(guān)系:根據(jù)已知條件,建立關(guān)于、、的方程組;④得方程:解方程組,將解代入所設(shè)方程,即為所求.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨機抽取某中學(xué)甲、乙兩班各10名同學(xué),測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.
(1)根據(jù)莖葉圖判斷哪個班的平均身高較高;
(2)計算甲班的樣本方差;
(3)現(xiàn)從乙班這10名同學(xué)中隨機抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱臺DEF ABC中,AB=2DE,G,H分別為AC,BC的中點.
(1)求證:平面ABED∥平面FGH;
(2)若CF⊥BC,AB⊥BC,求證:平面BCD⊥平面EGH.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sin2x﹣cos2x+1,下列結(jié)論中錯誤的是( )
A.f(x)的圖象關(guān)于( ,1)中心對稱
B.f(x)在( , )上單調(diào)遞減
C.f(x)的圖象關(guān)于x= 對稱
D.f(x)的最大值為3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)滿足:y=f(x﹣1)的圖象關(guān)于(1,0)點對稱,且當x≥0時恒有f(x﹣ )=f(x+ ),當x∈[0,2)時,f(x)=ex﹣1,則f(2017)+f(﹣2016)=( )
A.1﹣e
B.﹣1﹣e
C.e﹣1
D.e+1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合M={x|x<2},集合N={x|0<x<1},則下列關(guān)系中正確的是( )
A.M∪N=R
B.M∪RN=R
C.N∪RM=R
D.M∩N=M
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知α為銳角,且 ,函數(shù) ,數(shù)列{an}的首項a1=1,an+1=f(an).
(1)求函數(shù)f(x)的表達式;
(2)求證:數(shù)列{an+1}為等比數(shù)列;
(3)求數(shù)列{an}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)各項均為正數(shù)的數(shù)列{an}的前n項和為Sn , 且滿足an2﹣2Sn=2﹣an(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com