若直線y=3x+1是曲線y=ax2的切線,求a的值.
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:直線y=3x+1是曲線y=ax2的切線,可得ax2-3x-1=0有相等實(shí)數(shù)根,利用△=9+4a=0,求a的值.
解答: 解:∵直線y=3x+1是曲線y=ax2的切線,
∴ax2-3x-1=0有相等實(shí)數(shù)根,
∴△=9+4a=0,
∴a=-
9
4
點(diǎn)評(píng):本題考查直線與曲線的位置關(guān)系,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:若對(duì)任意x1、x2∈(a,b)恒有f(
x1+x2
2
)≤
f(x1)+f(x2)
2
成立,則稱函數(shù)f(x)在(a,b)上為凹函數(shù).已知凹函數(shù)具有如下性質(zhì):對(duì)任意的xi∈(a,b)(i=1,2,…,n),必有f(
x1+x2+…+xn
n
)≤
f(x1)+f(x2)+…+f(xn)
n
成立,其中等號(hào)當(dāng)且僅當(dāng)x1=x2=…=xn時(shí)成立.
(1)試判斷y=x2是否為R上的凹函數(shù),并說(shuō)明理由;
(2)若x、y、z∈R,且x+y+2z=8,試求x2+y2+2z2的最小值并指出取得最小值時(shí)x、y、z的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

利用行列式解關(guān)于x,y的方程組
mx+y=3
3x+(m+2)y=m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線l過(guò)拋物線y2=4x的焦點(diǎn)F,交拋物線于A、B兩點(diǎn),且點(diǎn)B在x軸下方,若直線l的傾斜角θ≤
4
,則|FB|的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了保證信息安全傳輸必須使用加密方式,有一種方式其加密、解密原理如下:
明文
加密
密文
發(fā)送
密文→明文
已知加密為y=ax (x為明文、y為密文),如果明文“3”通過(guò)加密后得到密文為“8”,再發(fā)送,接受方通過(guò)解密得到明文“3”,若接受方接到密文為“16”,則原發(fā)的明文是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

4x-2x+2-32=0的解為x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從一批有10件合格品與3件次品的產(chǎn)品中,一件一件地抽取產(chǎn)品,設(shè)各件產(chǎn)品被抽取到的可能性相同,在下列兩種情況下,分別求出直到取到合格品為止所需抽取的次數(shù)X的分布列.
(1)每次取出的產(chǎn)品都不放回該批產(chǎn)品中;
(2)每次取出的產(chǎn)品都立即放回該批產(chǎn)品中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的是(  )
A、當(dāng)x=
π
2
時(shí),sin(x+
π
6
)≠sinx,所以
π
6
不是f(x)=sinx的周期
B、當(dāng)x=
12
時(shí),sin(x+
π
6
)=sinx,所以
π
6
是f(x)=sinx的一個(gè)周期
C、因?yàn)閟in(π-x)=sinx,所以π是y=sinx的一個(gè)周期
D、因?yàn)閏os(
π
2
-x)=sinx,所以
π
2
是y=cosx的一個(gè)周期

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線y2-
x2
3
=1的兩個(gè)焦點(diǎn)為F1、F2,若A、B分別為漸近線l1、l2上的點(diǎn),且2|AB|=5|F1F2|.求線段AB的中點(diǎn)M的軌跡方程,并說(shuō)明是什么曲線?

查看答案和解析>>

同步練習(xí)冊(cè)答案