年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
某市2013年發(fā)放汽車牌照12萬張,其中燃油型汽車牌照10萬張,電動(dòng)型汽車2萬張.為了節(jié)能減排和控制總量,從2013年開始,每年電動(dòng)型汽車牌照按50%增長,而燃油型汽車牌照每一年比上一年減少萬張,同時(shí)規(guī)定一旦某年發(fā)放的牌照超過15萬張,以后每一年發(fā)放的電動(dòng)車的牌照的數(shù)量維持在這一年的水平不變.
(1)記2013年為第一年,每年發(fā)放的燃油型汽車牌照數(shù)構(gòu)成數(shù)列,每年發(fā)放的電動(dòng)型汽車牌照數(shù)為構(gòu)成數(shù)列,完成下列表格,并寫出這兩個(gè)數(shù)列的通項(xiàng)公式;
(2)從2013年算起,求二十年發(fā)放的汽車牌照總量.
| | | ||
3 | | | |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
要在墻上開一個(gè)上半部為半圓形、下部為矩形的窗戶(如圖所示),在窗框?yàn)槎ㄩL的條件下,要使窗戶能夠透過最多的光線,窗戶應(yīng)設(shè)計(jì)成怎樣的尺寸?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)設(shè)g(x)=log4,若函數(shù)f(x)與g(x)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某地方政府在某地建一座橋,兩端的橋墩相距m米,此工程只需建兩端橋墩之間的橋面和橋墩(包括兩端的橋墩).經(jīng)預(yù)測,一個(gè)橋墩的費(fèi)用為256萬元,相鄰兩個(gè)橋墩之間的距離均為x,且相鄰兩個(gè)橋墩之間的橋面工程費(fèi)用為(1+)x萬元,假設(shè)所有橋墩都視為點(diǎn)且不考慮其他因素,記工程總費(fèi)用為y萬元.
(1)試寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)m=1280米時(shí),需要新建多少個(gè)橋墩才能使y最小?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知冪函數(shù)y=x3m-9(m∈N*)的圖象關(guān)于y軸對稱,且在(0,+∞)上是減函數(shù).
(1)求m的值;
(2)求滿足不等式(a+1)-<(3-2a)-的實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x2+mx+n的圖象過點(diǎn)(1,3),且f(-1+x)=f(-1-x)對任意實(shí)數(shù)都成立,函數(shù)y=g(x)與y=f(x)的圖象關(guān)于原點(diǎn)對稱.
(1)求f(x)與g(x)的解析式;
(2)若F(x)=g(x)-λf(x)在(-1,1]上是增函數(shù),求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=.
(1)若f(x)>k的解集為{x|x<-3,或x>-2},求k的值;
(2)對任意x>0,f(x)≤t恒成立,求t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com