12.已知$\overrightarrow{a}$=(x,1),$\overrightarrow$=(3,1)且$\overrightarrow{a}$⊥$\overrightarrow$,則x等于 ( 。
A.-$\frac{1}{3}$B.-9C.9D.1

分析 利用向量的垂直的充要條件,列出方程求解即可.

解答 解:$\overrightarrow{a}$=(x,1),$\overrightarrow$=(3,1)且$\overrightarrow{a}$⊥$\overrightarrow$,
可得:3x+1=0
則x=-$\frac{1}{3}$.
故選:A.

點(diǎn)評(píng) 本題考查向量垂直的充要條件的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=1,2Sn=(n+1)an,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=$\frac{n+1}{{{{({n+2})}^2}a_n^2}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,試比較Tn與$\frac{5}{16}$的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=sin2ωx+2$\sqrt{3}$cos2ωx,(0<ω<2),且f(x-$\frac{π}{6}$)=f(x+$\frac{π}{2}$).
(Ⅰ)試求ω的值;
(Ⅱ)討論函數(shù)g(x)=2-|f(x)-$\sqrt{3}$|-kx(k∈R)在x∈[0,$\frac{7π}{18}$]上零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,已知橢圓C$:\;\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)與直線l:y=$\frac{1}{2}$x+1交于A、B兩點(diǎn).
(1)若橢圓的離心率為$\frac{{\sqrt{2}}}{2}$,B點(diǎn)坐標(biāo)為(-$\frac{4}{3}$,$\frac{1}{3}}$),求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線OA、OB的斜率分別為k1、k2,且k1k2=-$\frac{1}{4}$,求證:橢圓恒過定點(diǎn),并求出所有定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知兩向量$\overrightarrow{a}$,$\overrightarrow$的夾角為120°,|$\overrightarrow{a}$|=1,|$\overrightarrow$|=3,
(Ⅰ)求|5$\overrightarrow{a}$-$\overrightarrow$|的值
(Ⅱ)求向量5$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某校禮堂共有40排座位,每排25個(gè)座號(hào),一次法制講座報(bào)告會(huì)坐滿了聽眾,會(huì)后留下座位號(hào)為18的所有聽眾40人進(jìn)行座談,這是運(yùn)用了( 。
A.抽簽法B.隨機(jī)數(shù)表法C.分層抽樣法D.系統(tǒng)抽樣法

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某社區(qū)有800戶家庭,其中高收入家庭200戶,中等收入家庭480戶,低收入家庭120戶,為了調(diào)查社會(huì)購買力的某項(xiàng)指標(biāo),要從中抽取一個(gè)容量為100戶的樣本,記作①;某學(xué)校高一年級(jí)有12名音樂特長(zhǎng)生,要從中選出3名調(diào)查學(xué)習(xí)訓(xùn)練情況,記作②.那么完成上述兩項(xiàng)調(diào)查應(yīng)采用的抽樣方法是( 。
A.①用簡(jiǎn)單隨機(jī)抽樣  ②用系統(tǒng)抽樣B.①用分層抽樣  ②用簡(jiǎn)單隨機(jī)抽樣
C.①用系統(tǒng)抽樣  ②用分層抽樣D.①用分層抽樣  ②用系統(tǒng)抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知關(guān)于x的方程-2x2+bx+c=0,若b、c∈{0,1,2,3,4},記“該方程有實(shí)數(shù)根x1、x2且滿足-1≤x1≤x2≤2”為事件A,則事件A發(fā)生的概率為$\frac{16}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列給出的賦值語句中正確的是(  )
A.4=MB.M=-MC.B=A=3D.x+y=3

查看答案和解析>>

同步練習(xí)冊(cè)答案