過點(2,3)且以y=±
3
x為漸近線的雙曲線方程是
 
考點:雙曲線的標(biāo)準(zhǔn)方程
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:雙曲線的一條漸近線方程為y=±
3
x,利用共漸近線的雙曲線方程的表示形式可設(shè)雙曲線方程為3x2-y2=k,(k≠0),再把點(2,3)代入求k即可.
解答: 解:∵雙曲線的一條漸近線方程為y=±
3
x,
∴可設(shè)雙曲線方程為3x2-y2=k,(k≠0)
∵點(2,3)在雙曲線上,代入雙曲線方程,得12-9=k
∴k=3.
∴雙曲線標(biāo)準(zhǔn)方程為3x2-y2=3.
故答案為:x2-
y2
3
=1.
點評:本題主要考查共漸近線的雙曲線方程的表示形式,以及待定系數(shù)法求雙曲線方程,屬于雙曲線性質(zhì)的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x|x-4|(x∈R),若存在正實數(shù)k,使得方程f(x)=k有兩個根a、b,其中2<a<b,則ab-2(a+b)的取值范圍是( 。
A、(2,2+2
2
B、(-4,0)
C、(-2,2)
D、(-4,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個結(jié)論:
①若a>0,b>0,則(a+b)(
1
a
+
1
b
)≥4;
②a2+b2+3>2a+2b;
③若m>0,a>b>0,則
b
a
b+m
a+m
;
④若a=2-
5
,b=
5
-2,c=5-2
5
,則a、b、c之間的大小關(guān)系為c>b>a.
其中所有正確結(jié)論的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足
x≥1
x+y-4≤0
x-y≤0
,則z=x-2y的最大值是(  )
A、-5B、-2C、-1D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)(1+i)(2+i)的模等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班48人進(jìn)行了問卷調(diào)查得到了如下的2×2列聯(lián)表:
喜愛打籃球不喜愛打籃球合計
男生6
女生10
合計48
已知在全班48人中隨機(jī)抽取1人,抽到不喜愛打籃球的學(xué)生的概率為
1
3

(Ⅰ)請將上面的2×2列聯(lián)表補(bǔ)充完整(不用寫計算過程);
(Ⅱ)你是否有95%的把握認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由;
(Ⅲ)現(xiàn)從女生中抽取2人進(jìn)一步調(diào)查,設(shè)其中喜愛打籃球的女生人數(shù)為X,求X的分布列與期望.下面的臨界值表供參考:
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是公差為d(d≠0)的等差數(shù)列,它的前10項和S10=10,則a1,a2,a4成等比數(shù)列.證明:a1=d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

tanα+1
tanα-1
=3,則sin2α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

極坐標(biāo)的圓的標(biāo)準(zhǔn)方程是
 

查看答案和解析>>

同步練習(xí)冊答案