【題目】在如圖所示的幾何體中,面CDEF為正方形,面ABCD為等腰梯形,AB∥CD,AC=,AB=2BC=2,AC⊥FB.
(1)求證:AC⊥平面FBC;
(2)求四面體FBCD的體積;
(3)線段AC上是否存在點(diǎn)M,使得EA∥平面FDM?證明你的結(jié)論.
【答案】(1) 見解析.(2) .(3) 見解析.
【解析】試題分析:
(1)(2)(3)
試題解析:
(1)證明:在△ABC中,
∵AC=,AB=2,BC=1,
∴,
∴,
∴AC⊥BC.
又AC⊥FB,BC ∩FB=B,
∴AC⊥平面FBC.
(2)∵AC⊥平面FBC,FC平面FBC,
∴AC⊥FC.
∵CD⊥FC,AC∩CD=C,
∴FC⊥平面ABCD.
在等腰梯形ABCD中可得∠BCD=120°,CB=DC=1,
∴FC=1.
∴,
∴四面體FBCD的體積為.
(3)線段AC上存在點(diǎn)M,且M為AC中點(diǎn)時(shí),有EA∥平面FDM.
證明如下:
連接CE,與DF交于點(diǎn)N,連接MN.
∵四邊形CDEF為正方形,
∴N為CE中點(diǎn).
∴EA∥MN.
又MN平面FDM,EA平面FDM,
∴EA∥平面FDM.
故線段AC上存在點(diǎn)M,使得EA∥平面FDM成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題錯(cuò)誤的是( )
A. 若p∨q為假命題,則p∧q為假命題
B. 若a,b∈[0,1],則不等式a2+b2<成立的概率是
C. 命題“x∈R,使得x2+x+1<0”的否定是“x∈R,x2+x+1≥0”
D. 已知函數(shù)f(x)可導(dǎo),則“f′(x0)=0”是“x0是函數(shù)f(x)的極值點(diǎn)”的充要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點(diǎn)A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點(diǎn).
(1)求k的取值范圍;
(2)若=12,其中O為坐標(biāo)原點(diǎn),求|MN|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐PABCD的底面ABCD是矩形,PA⊥底面ABCD,點(diǎn)E、F分別是棱PC、PD的中點(diǎn),則
①棱AB與PD所在直線垂直;
②平面PBC與平面ABCD垂直;
③△PCD的面積大于△PAB的面積;
④直線AE與直線BF是異面直線.
以上結(jié)論正確的是________.(寫出所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求f(x)的定義域;
(2)當(dāng)x∈(1,+∞),
①求證:f(x)在區(qū)間(1,+∞)上是減函數(shù);
②求使關(guān)系式f(2+m)>f(2m-1)成立的實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠ADC=60°,側(cè)面PDC是正三角形,平面PDC⊥平面ABCD,CD=2,M為PB的中點(diǎn).
(1)求證:PA⊥平面CDM.
(2)求二面角D-MC-B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:方程有兩個(gè)不相等的實(shí)數(shù)根;命題:不等式的解集為.若或為真,為假,求實(shí)數(shù)的取值范圍.
【答案】或
【解析】
根據(jù)“或為真,為假”判斷出“為真,為假”,利用判別式列不等式分別求得為假、為真時(shí)的取值范圍,再取兩者的交集求得實(shí)數(shù)的取值范圍.
因?yàn)?/span>或為真,為假,所以為真,為假
為假,,即:,∴或 ,
為真,,即:,∴或,
所以取交集為或 .
【點(diǎn)睛】
本小題主要考查含有簡單邏輯聯(lián)結(jié)詞命題的真假性,考查一元二次方程根與判別式的關(guān)系,考查一元二次不等式解集為與判別式的關(guān)系,屬于中檔題.
【題型】解答題
【結(jié)束】
18
【題目】已知雙曲線的中心在原點(diǎn),焦點(diǎn)為,且離心率.
(1)求雙曲線的方程;
(2)求以點(diǎn)為中點(diǎn)的弦所在的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間.
(2)若方程上有解,求實(shí)數(shù)m的取值范圍.
(3)設(shè),已知區(qū)間[a,b](a,b∈R且a<b)滿足:y=g(x)在[a,b]上至少含有100個(gè)零點(diǎn),在所有滿足上述條件的[a,b]中求b﹣a的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com