【題目】已知定義在R上的函數(shù)f(x)= (a∈R)是奇函數(shù),函數(shù)g(x)= 的定義域?yàn)椋ī?,+∞).
(1)求a的值;
(2)若g(x)= 在(﹣1,+∞)上遞減,根據(jù)單調(diào)性的定義求實(shí)數(shù)m的取值范圍;
(3)在(2)的條件下,若函數(shù)h(x)=f(x)+g(x)在區(qū)間(﹣1,1)上有且僅有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)m的取值范圍.
【答案】
(1)解:∵函數(shù) 是奇函數(shù),
∴f(﹣x)=﹣f(x),
∴ 得a=0
(2)解:∵ 在(﹣1,+∞)上遞減,
∴任給實(shí)數(shù)x1,x2,當(dāng)﹣1<x1<x2時(shí),g(x1)>g(x2),
∴ ,
∴m<0
(3)解:由(1)得 ,
令h(x)=0,即 ,
化簡(jiǎn)得x(mx2+x+m+1)=0,
∴x=0或 mx2+x+m+1=0,
若0是方程mx2+x+m+1=0的根,則m=﹣1,
此時(shí)方程mx2+x+m+1=0的另一根為1,不符合題意,
∴函數(shù)h(x)=f(x)+g(x)在區(qū)間(﹣1,1)上有且僅有兩個(gè)不同的零點(diǎn),
等價(jià)于方程mx2+x+m+1=0(※)在區(qū)間(﹣1,1)上有且僅有一個(gè)非零的實(shí)根,
①當(dāng)△=12﹣4m(m+1)=0時(shí),得 ,
若 ,則方程(※)的根為 ,符合題意;
若 ,則與(2)條件下m<0矛盾,不符合題意,
∴ ,
②當(dāng)△>0時(shí),令h(x)=mx2+x+m+1,
由 ,得﹣1<m<0,
綜上所述,所求實(shí)數(shù)m的取值范圍是
【解析】(1)根據(jù)函數(shù)的奇偶性,求出a的值即可;(2)根據(jù)單調(diào)性的定義判斷m的范圍即可;(3)根據(jù)根域系數(shù)的關(guān)系,通過討論△的符號(hào),求出m的范圍即可.
【考點(diǎn)精析】本題主要考查了函數(shù)單調(diào)性的性質(zhì)和函數(shù)奇偶性的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集;在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩支球隊(duì)進(jìn)行總決賽,比賽采用七場(chǎng)四勝制,即若有一隊(duì)先勝四場(chǎng),則此隊(duì)為總冠軍,比賽就此結(jié)束.因兩隊(duì)實(shí)力相當(dāng),每場(chǎng)比賽兩隊(duì)獲勝的可能性均為.據(jù)以往資料統(tǒng)計(jì),第一場(chǎng)比賽可獲得門票收入40萬(wàn)元,以后每場(chǎng)比賽門票收入比上一場(chǎng)增加10萬(wàn)元.
(I)求總決賽中獲得門票總收入恰好為300萬(wàn)元的概率;
(II)設(shè)總決賽中獲得門票總收入為X,求X的均值E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求證:PC⊥BC;
(2)求點(diǎn)A到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)是偶函數(shù),且在(﹣∞,0]上是增函數(shù),又f(2)=0,則xf(x)>0的解集是( )
A.(﹣2,2)
B.(﹣∞,﹣2)∪(0,2)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣2,0]∪(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某醫(yī)療研究所為了檢驗(yàn)?zāi)撤N血清預(yù)防感冒的作用,把500名使用血清的人與另外500名未使用血清的人一年中的感冒記錄作比較,提出假設(shè)H:“這種血清不能起到預(yù)防感冒的作用”,利用2×2列聯(lián)表計(jì)算的K2≈3.918,經(jīng)查臨界值表知P(K2≥3.841)≈0.05.則下列表述中正確的是( )
A.有95℅的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”
B.若有人未使用該血清,那么他一年中有95℅的可能性得感冒
C.這種血清預(yù)防感冒的有效率為95℅
D.這種血清預(yù)防感冒的有效率為5℅
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】由大于0的自然數(shù)構(gòu)成的等差數(shù)列{an},它的最大項(xiàng)為26,其所有項(xiàng)的和為70;
(1)求數(shù)列{an}的項(xiàng)數(shù)n;
(2)求此數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PD垂直于底面ABCD,AD=PD,E分別為AP的中點(diǎn).
(Ⅰ)求證:DE垂直于平面PAB;
(Ⅱ)設(shè)BC =,AB=2,求直線EB與平面ABD所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為函數(shù)f(x)的不動(dòng)點(diǎn).已知f(x)=x2+bx+c
(1)若f(x)有兩個(gè)不動(dòng)點(diǎn)為﹣3,2,求函數(shù)y=f(x)的零點(diǎn)?
(2)若c= 時(shí),函數(shù)f(x)沒有不動(dòng)點(diǎn),求實(shí)數(shù)b的取值范圍?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四邊形ABCD中,∠D=2∠B,且AD=1,CD=3,cos∠B=
(1)求△ACD的面積;
(2)若BC=2 ,求AB的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com