【題目】下列四個(gè)結(jié)論中假命題的序號(hào)是 . ①垂直于同一直線的兩條直線互相平行;
②平行于同一直線的兩直線平行;
③若直線a,b,c滿足a∥b,b⊥c,則a⊥c;
④若直線a,b是異面直線,則與a,b都相交的兩條直線是異面直線.

【答案】①④
【解析】解:對(duì)于①,若l⊥α,則α內(nèi)任意兩條直線都與l垂直,顯然命題①是假命題;

對(duì)于②,由平行公理可知命題②是真命題;

對(duì)于③,將直線a平移到b的位置,由于b⊥c,故而a⊥c,故命題③是真命題;

對(duì)于④,在直線a上取P點(diǎn),在直線b上取點(diǎn)A,B,則PA,PB都與a,b相交,顯然PA,PB相交,故命題④是假命題.

所以答案是:①④.

【考點(diǎn)精析】利用空間中直線與平面之間的位置關(guān)系對(duì)題目進(jìn)行判斷即可得到答案,需要熟知直線在平面內(nèi)—有無(wú)數(shù)個(gè)公共點(diǎn);直線與平面相交—有且只有一個(gè)公共點(diǎn);直線在平面平行—沒(méi)有公共點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若(x+1)n=a0+a1(x﹣1)+a2(x﹣1)2++an(x﹣1)n , 且a0+a1++an=243,則(n﹣x)n展開(kāi)式的二次項(xiàng)系數(shù)和為(
A.16
B.32
C.64
D.1024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知U={x|x>﹣1},A={x||x﹣2|<1},則UA=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:x∈(1,+∞),x3+16>8x,則命題p的否定為(
A.¬p:x∈(1,+∞),x3+16≤8x
B.¬p:x∈(1,+∞),x3+16<8x
C.¬p:x0∈(1,+∞),x03+16≤8x0
D.¬p:x0∈(1,+∞),x03+16<8x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)镽,f(﹣1)=2,對(duì)任意x∈R,f′(x)>2,則f(x)>2x+4的解集為(
A.(﹣1,1)
B.(﹣1,+∞)
C.(﹣∞,﹣1)
D.(﹣∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用反證法證明命題“若自然數(shù)a,b,c的積為偶數(shù),則a,b,c中至少有一個(gè)偶數(shù)”時(shí),對(duì)結(jié)論正確的反設(shè)為(
A.a,b,c中至多有一個(gè)偶數(shù)
B.a,b,c都是奇數(shù)
C.a,b,c至多有一個(gè)奇數(shù)
D.a,b,c都是偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知α,β是兩個(gè)不同的平面,m,n是兩條不同的直線,給出下列命題:
①若m⊥α,mβ,則α⊥β;
②若mα,nα,m∥β,n∥β,則α∥β;
③若α∩β=m,n∥m,且nα,nβ,則n∥α且n∥β
其中正確命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若直線y=ax﹣2與y=(a+2)x+1相互垂直,則a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知全集U=R,A={x|x2﹣2x<0},B={x|x≥1},則A∪(UB)=(
A.(0,+∞)
B.(﹣∞,1)
C.(﹣∞,2)
D.(0,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案