【題目】已知函數(shù)在區(qū)間上的最大值為9,最小值為1,記;
(1)求實數(shù)的值;
(2)若不等式成立,求實數(shù)的取值范圍;
(3)定義在上的函數(shù),設,其中將區(qū)間任意劃分成個小區(qū)間,如果存在一個常數(shù),使得和式恒成立,則稱函數(shù)為在上的有界變差函數(shù),試判斷函數(shù)是否為在上的有界變差函數(shù)?若是,求的最小值;若不是,請說明理由.
【答案】(1),;(3)或;(3)是,.
【解析】
(1)根據(jù)在上的單調性可得的最大值和最小值,結合已知條件可求的值.
(2)不等式等價于,由后者可以得到,從而可求的取值范圍.
(3)對任意的上的劃分,必定存在,使得,從而可得,故可得的最大值,從而可判斷是上的有界變差函數(shù)且.
(1)因為的對稱軸為直線,
故在為增函數(shù),所以,
,解得,又,解得.
所以.
(2)由(1)得,
因為,所以等價于,
所以,故或,解得或.
(3)當時,,此時,
且在為減函數(shù),在為增函數(shù).
設將區(qū)間任意劃分成個小區(qū)間,
且,則存在,
使得,
所以
,
整理得到,
因為,,
故,當且僅當即時等號成立,
故是上的有界變差函數(shù),又,所以.
科目:高中數(shù)學 來源: 題型:
【題目】某基地蔬菜大棚采用水培、無土栽培方式種植各類蔬菜.過去50周的資料顯示,該地周光照量(小時)都在30小時以上,其中不足50小時的周數(shù)有5周,不低于50小時且不超過70小時的周數(shù)有35周,超過70小時的周數(shù)有10周.根據(jù)統(tǒng)計,該基地的西紅柿增加量(百斤)與使用某種液體肥料(千克)之間對應數(shù)據(jù)為如圖所示的折線圖.
(1)依據(jù)數(shù)據(jù)的折線圖,是否可用線性回歸模型擬合與的關系?請計算相關系數(shù)并加以說明(精確到0.01).(若,則線性相關程度很高,可用線性回歸模型擬合)
(2)蔬菜大棚對光照要求較大,某光照控制儀商家為該基地提供了部分光照控制儀,但每周光照控制儀最多可運行臺數(shù)受周光照量限制,并有如下關系:
周光照量(單位:小時) | |||
光照控制儀最多可運行臺數(shù) | 3 | 2 | 1 |
若某臺光照控制儀運行,則該臺光照控制儀周利潤為3000元;若某臺光照控制儀未運行,則該臺光照控制儀周虧損1000元.若商家安裝了3臺光照控制儀,求商家在過去50周周總利潤的平均值.
附:相關系數(shù)公式,參考數(shù)據(jù),.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱中,側面,已知,,,點E是棱的中點.
(1)求證:平面ABC;
(2)在棱CA上是否存在一點M,使得EM與平面所成角的正弦值為,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動直線:與軸交于點,過點作直線,交軸于點,點滿足,的軌跡為.
(1)求的方程;
(2)已知點,點,過作斜率為的直線交于,兩點,延長,分別交于,兩點,記直線的斜率為,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為,直線l與曲線C交于不同的兩點A,B.
(1)求曲線C的參數(shù)方程;
(2)若點P為直線與x軸的交點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動點到定直線:的距離比到定點的距離大2.
(1)求動點的軌跡的方程;
(2)在軸正半軸上,是否存在某個確定的點,過該點的動直線與曲線交于,兩點,使得為定值.如果存在,求出點坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù).
(1)當(為自然對數(shù)的底數(shù))時,求的最小值;
(2)討論函數(shù)零點的個數(shù);
(3)若對任意恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,對于⊙O:x2+y2=1來說,P是坐標系內任意一點,點P到⊙O的距離SP的定義如下:若P與O重合,SP=r;若P不與O重合,射線OP與⊙O的交點為A,SP=AP的長度(如圖).
(1)直線2x+2y+1=0在圓內部分的點到⊙O的最長距離為_____;
(2)若線段MN上存在點T,使得:
①點T在⊙O內;
②點P∈線段MN,都有ST≥SP成立.則線段MN的最大長度為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下四個結論,正確的是( )
①質檢員從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,每間隔15分鐘抽取一件產(chǎn)品進行某項指標檢測,這樣的抽樣是分層抽樣;
②在回歸直線方程中,當變量每增加一個單位時,變量增加0.13個單位;
③在頻率分布直方圖中,所有小矩形的面積之和是1;
④對于兩個分類變量與,求出其統(tǒng)計量的觀測值,觀測值越大,我們認為“與有關系”的把握程度就越大.
A.②④B.②③C.①③D.③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com