13.祖暅?zhǔn)悄媳背瘯r代的偉大科學(xué)家,5世紀(jì)末提出體積計算原理,即祖暅原理:“冪勢既同,則積不容異”.意思是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平面的任何一個平面所截,如果截面面積都相等,那么這兩個幾何體的體積一定相等,現(xiàn)有以下四個幾何體:圖①是從圓柱中挖去一個圓錐所得的幾何體;圖②、圖③、圖④分別是圓錐、圓臺和半球,則滿足祖暅原理的兩個幾何體為( 。
A.①②B.①③C.②④D.①④

分析 利用祖暅原理分析題設(shè)中的四個圖形,能夠得到在①和④中的兩個幾何體滿足祖暅原理.

解答 解:在①和④中,
夾在兩個平行平面之間的這兩個幾何體,
被平行于這兩個平面的任何一個平面所截,
截面面積都相等,
∴①④這兩個幾何體的體積一定相等.
故選:D.

點(diǎn)評 本題考查滿足祖暅原理的兩個幾何體的判斷,是基礎(chǔ)題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<π)在一個周期內(nèi)的圖象如圖所示.
(1)求函數(shù)f(x)的解析式與單調(diào)遞減區(qū)間;
(2)函數(shù)f(x)的圖象上所有點(diǎn)的橫坐標(biāo)擴(kuò)大到原來的2倍,再向右平移$\frac{π}{2}$個單位長度,得到g(x)的圖象,求函數(shù)y=g(x)在x∈[0,π]上的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.甲、乙兩人從6門課程中各選修3門,則甲、乙所選的課程中恰有1門相同的選法有180種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.若a2+c2-b2=ac,c=2,點(diǎn)G滿足|$\overrightarrow{BG}$|=$\frac{\sqrt{19}}{3}$且$\overrightarrow{BG}$=$\frac{1}{3}$($\overrightarrow{BA}$+$\overrightarrow{BC}$),則sinA=$\frac{3\sqrt{21}}{14}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{ln(x+1),x>0}\\{\frac{1}{2}x+1,x≤0}\end{array}\right.$,若m<n,且f(m)=f(n),則n-m的取值范圍是[3-2ln2,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合 A={x|-2<x<3},B={x|x≥m}.若 A∩B=∅,則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,3]B.(-2,3]C.(-∞,-2)D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,若b2+c2=a2-bc,則∠A=( 。
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=x 2cosx的導(dǎo)數(shù)為(  )
A.y′=2xcosx-x 2sinxB.y′=2xcosx+x 2sinx
C.y′=x 2cosx-2xsinxD.y′=xcosx-x 2sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一條漸近線的傾斜角是直線l:x-2y+1=0傾斜角的兩倍,則雙曲線的離心率為( 。
A.$\frac{5}{3}$B.$\frac{{\sqrt{7}}}{3}$C.$\frac{5}{4}$D.$\frac{4}{3}$

查看答案和解析>>

同步練習(xí)冊答案