分析 (1)利用導(dǎo)數(shù)求得函數(shù)f(x)的最大值,令其為$\frac{4}{27}$即可解得b的值即可;
(2)由g(x)≥-x2+(a+2)x分離出參數(shù)a后,轉(zhuǎn)化為求函數(shù)最值,利用導(dǎo)數(shù)可求最值.
解答 解:(1)由f(x)=-x3+x2+b,得f′(x)=-x(3x-2),
令f′(x)>0,解得:0<x<$\frac{2}{3}$,令f′(x)<0,解得:x>$\frac{2}{3}$或x<0,
故f(x)在(-∞,0)遞減,在(0,$\frac{2}{3}$)遞增,在($\frac{2}{3}$,+∞)遞減,
∴f(x)極大值=f($\frac{2}{3}$)=$\frac{4}{27}$+b=$\frac{4}{27}$,故b=0;
(2)由g(x)≥-x2+(a+2)x,得(x-lnx)a≤x2-2x.
∵x∈[1,e],∴l(xiāng)nx≤1≤x,且等號(hào)不能同時(shí)取,
∴l(xiāng)nx<x,即x-lnx>0,
∴a≤$\frac{{x}^{2}-2x}{x-lnx}$恒成立,
即a≤( $\frac{{x}^{2}-2x}{x-lnx}$)min.
令t(x)=$\frac{{x}^{2}-2x}{x-lnx}$,x∈[1,e],
求導(dǎo)得,t′(x)=$\frac{(x-1)(x+2-lnx)}{{(x-lnx)}^{2}}$,
當(dāng)x∈[1,e]時(shí),x-1≥0,lnx≤1,x+2-lnx>0,從而t′(x)≥0,
∴t(x)在[1,e]上為增函數(shù),tmin(x)=t(1)=-1,
∴a≤-1.
點(diǎn)評(píng) 該題考查利用導(dǎo)數(shù)研究函數(shù)的最值、函數(shù)恒成立問(wèn)題,考查轉(zhuǎn)化思想,考查學(xué)生分析解決問(wèn)題的能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | 3 | C. | 6 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {1,2,5,6} | B. | {1} | C. | {2} | D. | {1,2,3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com