【題目】在平面直角坐標(biāo)系中,已知橢圓的離心率,分別為左、右焦點(diǎn),過(guò)的直線交橢圓兩點(diǎn),且的周長(zhǎng)為8.

(1)求橢圓的方程;

(2)設(shè)過(guò)點(diǎn)的直線交橢圓于不同兩點(diǎn),.為橢圓上一點(diǎn),且滿足為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍.

【答案】(1);(2)

【解析】試題分析:(1的周長(zhǎng)為可得,由離心率,結(jié)合性質(zhì)可得,,從而可得橢圓的方程是;(2)的方程為,

,整理得.根據(jù)判別式大于零得,由 ,求出代入橢圓方程化簡(jiǎn)得,再利用弦長(zhǎng)公式及可得,綜上可得結(jié)果.

試題解析:(1)∵,∴.

又∵,∴,∴,∴橢圓的方程是.

(2)設(shè),,的方程為,

,整理得.

,得.

,

,

.

由點(diǎn)在橢圓上,得,化簡(jiǎn)得.

又由,即,

,代入得

化簡(jiǎn),得,則,,.

由①,得,聯(lián)立②,解得.

,即.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】最近幾年,每年11月初,黃浦江上漂浮著的水葫蘆便會(huì)迅速增長(zhǎng),嚴(yán)重影響了市容景觀,為了解決這個(gè)環(huán)境問(wèn)題,科研人員進(jìn)行科研攻關(guān),下圖是科研人員在實(shí)驗(yàn)室池塘中觀察水葫蘆面積與時(shí)間的函數(shù)關(guān)系圖像,假設(shè)其函數(shù)關(guān)系為指數(shù)函數(shù),并給出下列說(shuō)法:

①此指數(shù)函數(shù)的底數(shù)為;

②在第個(gè)月時(shí),水葫蘆的面積會(huì)超過(guò);

③設(shè)水葫蘆面積蔓延至所需的時(shí)間分別為,則有;其中正確的說(shuō)法有(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形,平面分別是線段的中點(diǎn),.

(1)求證:∥平面

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

上是單調(diào)遞增函數(shù),求的取值范圍;

設(shè),當(dāng)時(shí),若,且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;

(2)若函數(shù)有兩個(gè)極值點(diǎn),試判斷函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓Cab0),以橢圓短軸的一個(gè)頂點(diǎn)B與兩個(gè)焦點(diǎn)F1,F2為頂點(diǎn)的三角形周長(zhǎng)是4+2,且∠BF1F2=

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)若過(guò)點(diǎn)Q1,)引曲線C的弦AB恰好被點(diǎn)Q平分,求弦AB所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用適當(dāng)?shù)姆椒ū硎鞠铝屑希?/span>

1)方程組的解集;

2)方程的實(shí)數(shù)根組成的集合;

3)平面直角坐標(biāo)系內(nèi)所有第二象限的點(diǎn)組成的集合;

4)二次函數(shù)的圖象上所有的點(diǎn)組成的集合;

5)二次函數(shù) 的圖象上所有點(diǎn)的縱坐標(biāo)組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)圓x2+(y-2)2=4外一點(diǎn)A(3,-2),引圓的兩條切線,切點(diǎn)為T(mén)1,T2,則直線T1T2的方程為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某圓的極坐標(biāo)方程為,

(1)圓的普通方程和參數(shù)方程;

(2)圓上所有點(diǎn)的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案