3.已知x>-2,則x+$\frac{1}{x+2}$的最小值為(  )
A.-$\frac{1}{2}$B.-1C.2D.0

分析 變形利用基本不等式的性質(zhì)即可得出.

解答 解:∵x>-2,則x+$\frac{1}{x+2}$=x+2+$\frac{1}{x+2}$-2≥$2\sqrt{(x+2)•\frac{1}{x+2}}$-2=0,當(dāng)且僅當(dāng)x=-1時(shí)取等號(hào).
∴x+$\frac{1}{x+2}$的最小值為0.
故選:D.

點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a2與a10的等差中項(xiàng)是-2,且a1a6=14    
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)f(n)=$\frac{2{S}_{n}-2{a}_{n}}{n}$(n∈N*),求f(n)最小值及相應(yīng)的n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)函數(shù)f(x)=2sinx,x∈R的最小正周期為( 。
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow$=(1,-$\frac{\sqrt{3}}{3}$),則向量$\overrightarrow{a}$的模為2;向量$\overrightarrow{a}$、$\overrightarrow$的夾角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=$\frac{3}{\sqrt{lnx}}$的定義域?yàn)椋ā 。?table class="qanwser">A.(0,+∞)B.(1,+∞)C.[0,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若a=20.5,b=log0.25,c=0.52,則a、b、c三個(gè)數(shù)的大小關(guān)系式( 。
A.c<a<bB.b<c<aC.c<b<aD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=-$\frac{1}{3}$x3-x2,則曲線y=f(x)在點(diǎn)(1,f(1))處的切線斜率為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.將質(zhì)地均勻的硬幣連續(xù)拋擲2次,則2次都是正面向上的概率( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.△ABC滿足下列條件:①b=12,c=9,C=60°②b=3,c=4,B=30°;③b=3$\sqrt{3}$,c=6,B=60°;④a=5,b=8,A=30°.其中有兩個(gè)解的是( 。
A.①②B.②③C.①③④D.②④

查看答案和解析>>

同步練習(xí)冊(cè)答案