已知數(shù)列{an}滿足a1=1,a2=-2,數(shù)學(xué)公式,則該數(shù)列前26項(xiàng)和為


  1. A.
    0
  2. B.
    -1
  3. C.
    -8
  4. D.
    -10
D
分析:求出數(shù)列的前幾項(xiàng),通過,說明數(shù)列的特征,然后求出數(shù)列前26項(xiàng)和.
解答:由題意數(shù)列{an}滿足a1=1,a2=-2,,a3=-1,a4=,a5=1,a6=-2,a7=-1,a8=,
可知連續(xù)的兩項(xiàng)奇數(shù)項(xiàng)的和為0,偶數(shù)項(xiàng)是:-2,,-2,,-2,,-2…
所以S26=1+(a2+a4+a6+a8+…a26)=1+(-2+-2+-2+…-2)=-10.
故選D.
點(diǎn)評(píng):本題是中檔題,考查數(shù)列的函數(shù)的特征,求出數(shù)列的前幾項(xiàng),得到數(shù)列的特征是解題的關(guān)鍵,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn;
(3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項(xiàng)公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:對(duì)于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an;
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習(xí)冊(cè)答案