設f(x)是R上的奇函數(shù),f(x+2)=-f(x),當0≤x≤1時,f(x)=x.
(Ⅰ)求f(π)的值;
(Ⅱ)作出當-4≤x≤4時函數(shù)f(x)的圖象,并求它與x軸所圍成圖形的面積;
(Ⅲ)直接寫出函數(shù)f(x)在R上的單調區(qū)間.
分析:(1)利用f(x+2)=-f(x)得f(x)是以4為周期的周期函數(shù),從而可求f(π)的值;
(2)當-4≤x≤4時,確定函數(shù)y=f(x)的圖象關于直線x=1對稱,可得f(x)的圖象,從而可求圖象與x軸所圍成圖形的面積;
(3)根據(jù)周期性,結合函數(shù)的通項,即可得到函數(shù)f(x)的單調區(qū)間.
解答:解:(1)由f(x+2)=-f(x)得,f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),
∴f(x)是以4為周期的周期函數(shù),
∴f(π)=f(-1×4+π)=f(π-4)=-f(4-π)=-(4-π)=π-4.
(2)由f(x)是奇函數(shù)與f(x+2)=-f(x),得:f[(x-1)+2]=-f(x-1)=f[-(x-1)],
即f(1+x)=f(1-x).
故知函數(shù)y=f(x)的圖象關于直線x=1對稱.
又0≤x≤1時,f(x)=x,且f(x)的圖象關于原點成中心對稱,則f(x)的圖象如圖所示.

當-4≤x≤4時,f(x)的圖象與x軸圍成的圖形面積為S,
則S=4S△OAB=4×
1
2
×2×1
=4,
(3)由圖得,
函數(shù)f(x)的單調遞增區(qū)間為[4k-1,4k+1](k∈Z),
單調遞減區(qū)間[4k+1,4k+3](k∈Z).
點評:本題考查函數(shù)的奇偶性與周期性,函數(shù)的單調性,考查學生作圖能力和分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

16、設f(x)是R上的奇函數(shù),且f(x+2)=-f(x),當0≤x≤1時,f(x)=x,則f(7.5)等于
-0.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是R上的奇函數(shù),且f(-1)=0,當x>0時,(x2+1)f′(x)-2xf(x)<0,則不等式f(x)>0的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是R上的奇函數(shù),且對?x∈R都有f(x+2)=-f(x),當-1≤x≤1時,f(x)=x3
(1)求證:直線x=1是函數(shù)f(x)的圖象的一條對稱軸;
(2)當x=[1,5]時,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是R上的奇函數(shù),且y=f(x)的圖象關于直線x=
12
對稱,則f(1)+f(2)+f(3)+f(4)+f(5)=
0
0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是R上的奇函數(shù),且當x∈(0,+∞)時,f(x)=x(1+x),則 f(x)在 (-∞,0)上的解析式
f(x)=x(1-x)
f(x)=x(1-x)

查看答案和解析>>

同步練習冊答案