10.下列說法正確的是( 。
A.小明身高1.78 m,則他應(yīng)該是高個子的總體這一集合中的一個元素
B.所有大于0小于10的實數(shù)可以組成一個集合,該集合有9個元素
C.平面上到定直線的距離等于定長的所有點的集合是一條直線
D.任意改變一個集合中元素的順序,所得集合仍和原來的集合相等

分析 根據(jù)集合的定義,集合元素的確定性,0到10之間的實數(shù)有無數(shù)個,到定直線距離相等的點形成集合為一條直線或兩條直線即可判斷每個選項的正誤,從而找到正確選項.

解答 解:A.多高算是高個子是不確定的,∴不滿足集合元素的確定性,即該選項錯誤;
B.大于0小于10的實數(shù)有無數(shù)個,∴該集合有無限個元素,即該選項錯誤;
C.平面上到定直線的距離等于定長的所有點的集合應(yīng)是一條或兩條直線,即該選項錯誤;
D.集合中的元素是無序的,任意改變一個集合中元素的順序,所得集合仍和原來的集合相等,即該選項正確.
故選:D.

點評 考查集合的定義,集合元素的確定性,以及對實數(shù)的認識.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知集合A={x|x2-3x+2<0},B={x|a-1<x<3a+1}.
(1)當(dāng)a=$\frac{1}{4}$時,求A∩B;
(2)命題p:x∈A,命題q:x∈B,若q是p的必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.給出下列三個命題:
①函數(shù)y=log2(x2-5x+6)的單調(diào)增區(qū)間是($\frac{5}{2}$,+∞)
②經(jīng)過任意兩點的直線,都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)來表示;
③命題p:“?x∈R,x2-x-1≤0”的否定是“?x0∈R,x${\;}_{0}^{2}$-x0-1>0”,
其中正確命題的個數(shù)有( 。﹤.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)F為拋物線y2=4x的焦點,A,B,C為該拋物線上不同的三點,$\overrightarrow{FA}+\overrightarrow{FB}+\overrightarrow{FC}=\overrightarrow 0$,O為坐標(biāo)原點,且△OFA、△OFB、△OFC的面積分別為S1、S2、S3,則$S_1^2+S_2^2+S_3^2$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.cos6°cos36°+sin6°cos54°=( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.0D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知i是虛數(shù)單位,$\frac{1-z}{1+z}$=2i,則|z|等于( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知tanα=2,求下列各式的值
(1)$\frac{sinα+2cosα}{4cosα-sinα}$
(2)sinαcosα+cos2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β為非零實數(shù)),f(2011)=5,則f(2012)=( 。
A.1B.3C.5D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,已知向量$\overrightarrow{AB}=({6,1}),\overrightarrow{BC}=({x,y}),\overrightarrow{CD}=({-2,-3})$.
(1)若$\overrightarrow{BC}$∥$\overrightarrow{DA}$,求x與y之間的關(guān)系;
(2)在(1)的條件下,若有$\overrightarrow{AC}⊥\overrightarrow{BD}$,求x,y的值以及四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊答案