【題目】指數(shù)是用體重公斤數(shù)除以身高米數(shù)的平方得出的數(shù)字,是國(guó)際上常用的衡量人體胖瘦程度以及是否健康的一個(gè)標(biāo)準(zhǔn).對(duì)于高中男體育特長(zhǎng)生而言,當(dāng)數(shù)值大于或等于20.5時(shí),我們說(shuō)體重較重,當(dāng)數(shù)值小于20.5時(shí),我們說(shuō)體重較輕,身高大于或等于我們說(shuō)身高較高,身高小于170cm我們說(shuō)身高較矮.
(Ⅰ)已知某高中共有32名男體育特長(zhǎng)生,其身高與指數(shù)的數(shù)據(jù)如散點(diǎn)圖,請(qǐng)根據(jù)所得信息,完成下述列聯(lián)表,并判斷是否有的把握認(rèn)為男生的身高對(duì)指數(shù)有影響.
身高較矮 | 身高較高 | 合計(jì) | |
體重較輕 | |||
體重較重 | |||
合計(jì) |
(Ⅱ)①?gòu)纳鲜?/span>32名男體育特長(zhǎng)生中隨機(jī)選取8名,其身高和體重的數(shù)據(jù)如表所示:
編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高 | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
體重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
根據(jù)最小二乘法的思想與公式求得線性回歸方程為.利用已經(jīng)求得的線性回歸方程,請(qǐng)完善下列殘差表,并求(解釋變量(身高)對(duì)于預(yù)報(bào)變量(體重)變化的貢獻(xiàn)值)(保留兩位有效數(shù)字);
編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
體重(kg) | 58 | 53 | 61 | 66 | 57 | 50 | 66 | |
殘差 |
②通過(guò)殘差分析,對(duì)于殘差的最大(絕對(duì)值)的那組數(shù)據(jù),需要確認(rèn)在樣本點(diǎn)的采集中是否有人為的錯(cuò)誤,已知通過(guò)重新采集發(fā)現(xiàn),該組數(shù)據(jù)的體重應(yīng)該為.小明重新根據(jù)最小二乘法的思想與公式,已算出,請(qǐng)?jiān)谛∶魉愕幕A(chǔ)上求出男體育特長(zhǎng)生的身高與體重的線性回歸方程.
參考數(shù)據(jù):
,,,,
參考公式:,,,,.
0.10 | 0.05 | 0.01 | 0.005 | |
2.706 | 3.811 | 6.635 | 7.879 |
【答案】(Ⅰ)列聯(lián)表詳見(jiàn)解析,沒(méi)有的把握認(rèn)為男生的身高對(duì)指數(shù)有影響;(Ⅱ)①殘差表詳見(jiàn)解析,約為0.91;②.
【解析】
(Ⅰ)根據(jù)散點(diǎn)圖完善列聯(lián)表,求出與表中對(duì)應(yīng)臨界值比較即可判斷;(Ⅱ)①求出編號(hào)為8的數(shù)據(jù)的殘差,相應(yīng)值代入公式計(jì)算即可;②求出,代入中即可求得,從而求得回歸方程.
(Ⅰ)
身高較矮 | 身高較高 | 合計(jì) | |
體重較輕 | 6 | 15 | 21 |
體重較重 | 6 | 5 | 11 |
合計(jì) | 12 | 20 | 32 |
由于,
因此沒(méi)有的把握認(rèn)為男生的身高對(duì)指數(shù)有影響.
(Ⅱ)①對(duì)編號(hào)為8的數(shù)據(jù),完成殘差表如下所示:
編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
體重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
殘差 | 0.1 | 0.3 | 0.9 | 3.5 |
.
所以解釋變量(身高)對(duì)于預(yù)報(bào)變量(體重)變化的貢獻(xiàn)值約為0.91.
②由①可知,第八組數(shù)據(jù)的體重應(yīng)為58.此時(shí),易知,,,
,
所以重新采集數(shù)據(jù)后,男體育特長(zhǎng)生的身高與體重的線性回歸方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)是定義域?yàn)?/span>的奇函數(shù),且它的最小正周期是T,已知,.給出下列四個(gè)判斷:①對(duì)于給定的正整數(shù),存在,使得成立;②當(dāng)a時(shí),對(duì)于給定的正整數(shù),存在,使得成立;③當(dāng)時(shí),函數(shù)既有對(duì)稱軸又有對(duì)稱中心;④當(dāng)時(shí),的值只有0或.其中正確判斷的有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,正三角形的邊長(zhǎng)為2, 分別在三邊和上, 為的中點(diǎn), .
(Ⅰ)當(dāng)時(shí),求的大;
(Ⅱ)求的面積的最小值及使得取最小值時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,用四種不同顏色給圖中的A,B,C,D,E,F六個(gè)點(diǎn)涂色,要求每個(gè)點(diǎn)涂一種顏色,且圖中每條線段的兩個(gè)端點(diǎn)涂不同顏色,則不同的涂色方法用
A.288種B.264種C.240種D.168種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的極值點(diǎn)個(gè)數(shù);
(2)若有兩個(gè)極值點(diǎn),試判斷與的大小關(guān)系并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中中,曲線C的參數(shù)方程(為參數(shù),).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.
(1)設(shè)P是曲線C上的一個(gè)動(dòng)點(diǎn),當(dāng)時(shí),求點(diǎn)P到直線的距離的最大值;
(2)若曲線C上所有的點(diǎn)均在直線的右下方,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三棱錐中,,△為等邊三角形,二面角的余弦值為,當(dāng)三棱錐的體積最大時(shí),其外接球的表面積為.則三棱錐體積的最大值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù),有下述四個(gè)結(jié)論:
①是周期為的函數(shù);
②在單調(diào)遞增;
③在上有三個(gè)零點(diǎn);
④的值域是.
其中所有正確結(jié)論的編號(hào)是( )
A.②③B.①③C.①③④D.①②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】著名物理學(xué)家李政道說(shuō):“科學(xué)和藝術(shù)是不可分割的”.音樂(lè)中使用的樂(lè)音在高度上不是任意定的,它們是按照嚴(yán)格的數(shù)學(xué)方法確定的.我國(guó)明代的數(shù)學(xué)家、音樂(lè)理論家朱載填創(chuàng)立了十二平均律是第一個(gè)利用數(shù)學(xué)使音律公式化的人.十二平均律的生律法是精確規(guī)定八度的比例,把八度分成13個(gè)半音,使相鄰兩個(gè)半音之間的頻率比是常數(shù),如下表所示,其中表示這些半音的頻率,它們滿足.若某一半音與的頻率之比為,則該半音為( )
頻率 | |||||||||||||
半音 | C | D | E | F | G | A | B | C(八度) |
A.B.GC.D.A
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com