已知函數(shù)f(x)=(1+x)2-4a lnx(a∈N﹡).

(Ⅰ)若函數(shù)f(x)在(1,+∞)上是增函數(shù),求a的值;

(Ⅱ)在(Ⅰ)的條件下,若關(guān)于x的方程f(x)=x2-x+b在區(qū)間[1,e]上恰有一個實(shí)根,求實(shí)數(shù)b的取值范圍.

 

【答案】

;⑵為所求.

【解析】

試題分析:⑴由題意,函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013051708510978452655/SYS201305170851393313174931_DA.files/image005.png">

 

恒成立,記

由于函數(shù)上是增函數(shù),故,所以

,所以為所求.                         5分

⑵由題知,整理得

,則

注意到,故函數(shù)上單調(diào)遞減,在上單調(diào)遞增.

知,

所以關(guān)于的方程在區(qū)間上恰有一個實(shí)根 時

為所求.

考點(diǎn):本題考查了導(dǎo)數(shù)的運(yùn)用

點(diǎn)評:近幾年新課標(biāo)高考對于函數(shù)與導(dǎo)數(shù)這一綜合問題的命制,一般以有理函數(shù)與半超越(指數(shù)、對數(shù))函數(shù)的組合復(fù)合且含有參量的函數(shù)為背景載體,解題時要注意對數(shù)式對函數(shù)定義域的隱蔽,這類問題重點(diǎn)考查函數(shù)單調(diào)性、導(dǎo)數(shù)運(yùn)算、不等式方程的求解等基本知識,注重?cái)?shù)學(xué)思想(分類與整合、數(shù)與形的結(jié)合)方法(分析法、綜合法、反證法)的運(yùn)用.把數(shù)學(xué)運(yùn)算的“力量”與數(shù)學(xué)思維的“技巧”完美結(jié)合

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年上虞市質(zhì)檢一文) 已知函數(shù)fx)=ax4bx2c的圖象經(jīng)過點(diǎn)(0,2),且在x=1處的切線方程

y=-4x

(Ⅰ)求函數(shù)yfx)的解析式;       

    (Ⅱ)求函數(shù)yfx)在區(qū)間[-4,1]上的最值.   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河南省原名校高三上學(xué)期期聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=2sin(ωx+)(ω>0,0<<π)的圖象如圖所示.

(1)求函數(shù)f(x)的解析式:

(2)已知,且a∈(0,),求f(a)的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆河南省原名校聯(lián)盟高三上學(xué)期第一次摸底考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=ln-a+x(a>0).

(Ⅰ)若,求f(x)圖像在x=1處的切線的方程;

(Ⅱ)若的極大值和極小值分別為m,n,證明:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年高三一輪精品復(fù)習(xí)單元測試(12)數(shù)學(xué)試卷解析版 題型:解答題

(本小題滿分12分)已知函數(shù)f(x)=x3+ax2+bx+c在x=-與x=1時都取得極值.

(1)求a、b的值與函數(shù)f(x)的單調(diào)區(qū)間;

(2)xÎ〔-1,2〕,不等式f(x)<c2恒成立,求c的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河南省商丘市高三第二次模擬考試數(shù)學(xué)理卷 題型:填空題

已知函數(shù)f(x)=,若f(x)存在零點(diǎn),則實(shí)數(shù)a的取值范圍

 

查看答案和解析>>

同步練習(xí)冊答案