【題目】為響應(yīng)國家“精準(zhǔn)扶貧、精準(zhǔn)脫貧”的號召,某貧困縣在精準(zhǔn)推進(jìn)上下實功,在在精準(zhǔn)落實上見實效現(xiàn)從全縣扶貧對象中隨機(jī)抽取人對扶貧工作的滿意度進(jìn)行調(diào)查,以莖葉圖中記錄了他們對扶貧工作滿意度的分?jǐn)?shù)(滿分分)如圖所示,已知圖中的平均數(shù)與中位數(shù)相同.現(xiàn)將滿意度分為“基本滿意”(分?jǐn)?shù)低于平均分)、“滿意”(分?jǐn)?shù)不低于平均分且低于分)和“很滿意”(分?jǐn)?shù)不低于分)三個級別.
(1)求莖葉圖中數(shù)據(jù)的平均數(shù)和的值;
(2)從“滿意”和“很滿意”的人中隨機(jī)抽取人,求至少有人是“很滿意”的概率.
【答案】(1)平均數(shù)為;(2)
【解析】
(1)由題意,根據(jù)圖中個數(shù)據(jù)的中位數(shù)為,
由平均數(shù)與中位數(shù)相同,得平均數(shù)為,
所以,
解得;
(2)依題意,人中,“基本滿意”有人,“滿意”有人,“很滿意”有人.“滿意”和“很滿意”的人共有人.分別記“滿意”的人為,,,,“很滿意”的人為,,,.從中隨機(jī)抽取人的一切可能結(jié)果所組成的基本事件共個:,,,,,,,,,,,,,,,,,,,,,,,,,,,.
用事件表示“人中至少有人是很滿意”這一件事,則事件由個基本事件組成:,,,,,,,,,,,,,,,,,,,,,,共有22個.
故事件的概率為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是定義在R上的函數(shù),對∈R都有,且當(dāng)>0時,<0,且=1.
(1)求的值;
(2)求證:為奇函數(shù);
(3)求在[-2,4]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系xOy中,過點P(﹣1,﹣2)的直線l的參數(shù)方程為 (t為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsinθtanθ=2a(a>0),直線l與曲線C相交于不同的兩點M、N.
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若|PM|=|MN|,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) f(x)=|x+2|﹣|x﹣3|﹣a
(Ⅰ)當(dāng) a=1 時,求函數(shù) f(x)的最大值;
(Ⅱ)若 f(x)≤ 對任意 x∈R 恒成立,求實數(shù) a 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市為了解端午節(jié)期間粽子的銷售量,對其所在銷售范圍內(nèi)的1000名消費(fèi)者在端午節(jié)期間的粽子購買量(單位:g)進(jìn)行了問卷調(diào)查,得到如圖所示的頻率分布直方圖.
(Ⅰ)求頻率分布直方圖中a的值;
(Ⅱ)求這1000名消費(fèi)者的棕子購買量在600g~1400g的人數(shù);
(Ⅲ)求這1000名消費(fèi)者的人均粽子購買量(頻率分布直方圖中同一組的數(shù)據(jù)用該組區(qū)間的中點值作代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】李克強(qiáng)總理在2018年政府工作報告指出,要加快建設(shè)創(chuàng)新型國家,把握世界新一輪科技革命和產(chǎn)業(yè)變革大勢,深入實施創(chuàng)新驅(qū)動發(fā)展戰(zhàn)略,不斷增強(qiáng)經(jīng)濟(jì)創(chuàng)新力和競爭力.某手機(jī)生產(chǎn)企業(yè)積極響應(yīng)政府號召,大力研發(fā)新產(chǎn)品,爭創(chuàng)世界名牌.為了對研發(fā)的一批最新款手機(jī)進(jìn)行合理定價,將該款手機(jī)按事先擬定的價格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如表所示:
單價(千元) | ||||||
銷量(百件) |
已知.
(1)若變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(百件)關(guān)于試銷單價(千元)的線性回歸方程;
(2)用(1)中所求的線性回歸方程得到與對應(yīng)的產(chǎn)品銷量的估計值.
(參考公式:線性回歸方程中的估計值分別為)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三條直線型公路,,在點處交匯,其中與、與的夾角都為,在公路上取一點,且km,過鋪設(shè)一直線型的管道,其中點在上,點在上(,足夠長),設(shè)km,km.
(1)求出,的關(guān)系式;
(2)試確定,的位置,使得公路段與段的長度之和最小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有人用三段論進(jìn)行推理:“函數(shù) 的導(dǎo)函數(shù) 的零點即為函數(shù)的極值點,函數(shù) 的導(dǎo)函數(shù)的零點為 ,所以 是函數(shù) 的極值點 ”,上面的推理錯誤的是( )
A. 大前提 B. 小前提 C. 推理形式 D. 以上都是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓 的離心率為 ,頂點為A1、A2、B1、B2 , 且 .
(1)求橢圓C的方程;
(2)P是橢圓C上除頂點外的任意點,直線B2P交x軸于點Q,直線A1B2交A2P于點E.設(shè)A2P的斜率為k,EQ的斜率為m,試問2m﹣k是否為定值?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com