Loading [MathJax]/jax/output/CommonHTML/jax.js
18.已知離散型隨機(jī)變量ξ~B(n,p),且E(2ξ+1)=5.8,D(ξ)=1.44,那么n,p的值分別為( �。�
A.n=4,p=0.6B.n=6,p=0.4C.n=8,p=0.3D.n=24,p=0.1

分析 由已知求出E(ξ)=2.4,D(ξ)=1.44,利用二項(xiàng)分布的性質(zhì)列出方程組,能求出n,p的值.

解答 解:∵離散型隨機(jī)變量ξ~B(n,p),且E(2ξ+1)=5.8,D(ξ)=1.44,
∴2E(ξ)+1=5.8,∴E(ξ)=2.4,
{np=2.4np1p=1.44
解得n=6,p=0.4.
故選:B.

點(diǎn)評 本題考查二項(xiàng)分布中n,p的值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意二項(xiàng)分布的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,矩形ABCD中,AB=3,AD=4,M,N分別為線段BC,CD上的點(diǎn),且滿足1CM2+1CN2=1,若AC=xAM+yAN,則x+y的最小值為54

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在長方體ABCD-A1B1C1D1中,AA1=AD=1,E為CD中點(diǎn).
(Ⅰ)求證:C1D∥平面AB1E;
(Ⅱ)求證:BC1⊥B1E;
(Ⅲ) 若AB=2,求二面角E-AB1-B的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.將三顆骰子各擲一次,設(shè)事件A為“恰好出現(xiàn)一個(gè)6點(diǎn)”,事件B為“三個(gè)點(diǎn)數(shù)都不相同”,則概率P(B|A)的值為( �。�
A.45B.59C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知z1=m2+1m+1i,z2=(2m-3)+12i,m∈R,i為虛數(shù)單位.且z1+z2是純虛數(shù).
(Ⅰ)求實(shí)數(shù)m的值.
(Ⅱ)求z1¯z2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.我省新高考采用“7選3”的選考模式,即從政治、歷史、地理、物理、化學(xué)、生物、技術(shù)這7門科目中選3門作為選考科目,那么所有可能的選考類型共有35種;甲、乙兩人根據(jù)自己的興趣特長以及職業(yè)生涯規(guī)劃愿景進(jìn)行選課,甲必選物理和政治,乙不選技術(shù),則兩人至少有一門科目相同的選法共有92種(用數(shù)學(xué)作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)f(x)=|x+1|+|x-1|.
(1)求f(x)≤x+2的解集;
(2)若不等式f(x)≤log2(a2-4a+12)對任意實(shí)數(shù)a恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.學(xué)校從參加高一年級期中考試的學(xué)生中抽出50名學(xué)生,并統(tǒng)計(jì)了他們的數(shù)學(xué)成績(成績均為整數(shù)且滿分為150分),數(shù)學(xué)成績分組及各組頻數(shù)如下:
[60,75),2;[75,90),3;[90,105),14;[105,120),15;[120,135),12;[135,150],4.
(1)在給出的樣本頻率分布表中,求A,B,C,D的值;
(2)估計(jì)成績在120分以上(含120分)學(xué)生的比例;
(3)為了幫助成績差的學(xué)生提高數(shù)學(xué)成績,學(xué)校決定成立“二幫一”小組,即從成績在[135,150]的學(xué)生中選兩位同學(xué),共同幫助成績在[60,75)中的某一位同學(xué).已知甲同學(xué)的成績?yōu)?2分,乙同學(xué)的成績?yōu)?40分,求甲、乙兩同學(xué)恰好被安排在同一小組的概率.
樣本頻率分布表:
分組頻數(shù)頻率
[60,75)20.04
[75,90)30.06
[90,105)140.28
[105,120)150.30
[120,135)AB
[135,150]40.08
合計(jì)CD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若關(guān)于x的方程x2+ax+a2-a-2=0的一根大于1,另一根小于1,則a的取值范圍為(  )
A.0<a<1B.a>-1C.-1<a<1D.a<1

查看答案和解析>>

同步練習(xí)冊答案