設(shè)定義在R上的函數(shù)f(x)=
1
|x-1|
,x≠1
1,x=1
,若關(guān)于x的方程f2(x)+bf(x)+c=0,有3個不等的實數(shù)根x1,x2,x3,則x1+x2+x3=(  )
A、0B、1C、3D、2
分析:作出f(x)的圖象,根據(jù)函數(shù)圖象的特點得到函數(shù)關(guān)于直線x=1對稱.從而得出f2(x)+bf(x)+c=0必有一根使f(x)=1,利用數(shù)形結(jié)合即可得到結(jié)論.
解答:解:作出函數(shù)的圖象如圖:精英家教網(wǎng)
易知f(x)的圖象關(guān)于直線x=1對稱,
設(shè)t=f(x),
則當(dāng)t=1時,方程f(x)=t有3個根,
當(dāng)t>0且t≠1時,方程f(x)=t有2個根,
當(dāng)t≤0時,方程f(x)=t有0個根,
對于方程f2(x)+bf(x)+c=0,是一個關(guān)于f(x)的一元二次方程,
若方程f2(x)+bf(x)+c=0,有3個不等的實數(shù)根x1,x2,x3,
則此一元二次方程僅有一根,即t=1,f(x)=1,
此時x1,x2,x3三個數(shù)中有一個是1,另兩個關(guān)于x=1對稱,此時有 x1+x2+x3=3,
故選:C.
點評:本題主要考查方程根的個數(shù)的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵,考查學(xué)生的綜合應(yīng)用能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的函數(shù)f(x)=
1
x-2
(x>2)
1
2-x
(x<2)
1(x=2)
,若關(guān)于x的方程f2(x)+af(x)+b=3有且只有3個不同實數(shù)解x1、x2、x3,且x1<x2<x3,則x12+x22+x32=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的函數(shù)f(x)滿足f(x)•f(x+2)=3,若f(1)=2,則f(5)=
2
2
;f(2011)=
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•順義區(qū)二模)設(shè)定義在R上的函數(shù)f(x)是最小正周期為2π的偶函數(shù),f′(x)是f(x)的導(dǎo)函數(shù).當(dāng)x∈[0,π]時,0<f(x)<1;當(dāng)x∈(0,π)且x≠
π
2
時,(x-
π
2
)f′(x)<0
.則函數(shù)y=f(x)-cosx在[-3π,3π]上的零點個數(shù)為
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的函數(shù)f(x)滿足f(x+π)=f(x-π),f(
π
2
-x
)=f(
π
2
+x
),當(dāng)x∈[-
π
2
,
π
2
]
時,0<f(x)<1;當(dāng)x∈(-
π
2
,
π
2
)
且x≠0時,x•f′(x)<0,則y=f(x)與y=cosx的圖象在[-2π,2π]上的交點個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的函數(shù)f(x)同時滿足以下條件:①f(x+1)=-f(x)對任意的x都成立;②當(dāng)x∈[0,1]時,f(x)=ex-e•cos
πx
2
+m(其中e=2.71828…是自然對數(shù)的底數(shù),m是常數(shù)).記f(x)在區(qū)間[2013,2016]上的零點個數(shù)為n,則( 。
A、m=-
1
2
,n=6
B、m=1-e,n=5
C、m=-
1
2
,n=3
D、m=e-1,n=4

查看答案和解析>>

同步練習(xí)冊答案