13.下列函數(shù)中,最小正周期為π且圖象關(guān)于y軸對(duì)稱(chēng)的函數(shù)是( 。
A.y=sin2x+cos2xB.y=sinx•cosxC.y=|cos2x|D.y=sin(2x+$\frac{π}{2}$)

分析 利用兩角和差的三角函數(shù)、誘導(dǎo)公式化簡(jiǎn)函數(shù)的解析式,再利用三角函數(shù)的周期性和奇偶性,判斷各個(gè)選項(xiàng)是否正確,從而得出結(jié)論.

解答 解:由于y=sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$)為非奇非偶函數(shù),故它的圖象不關(guān)于y軸對(duì)稱(chēng),故排除A;
由于y=sinx•cosx=$\frac{1}{2}$sin2x,為奇函數(shù),它的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),故排除B;
由于y=|cos2x|的周期為$\frac{1}{2}$•$\frac{2π}{2}$=$\frac{π}{2}$,故排除C;
由于y=sin(2x+$\frac{π}{2}$)=cos2x,它的周期為$\frac{2π}{2}$=π,且它為偶函數(shù),它的圖象關(guān)于y軸對(duì)稱(chēng),故滿(mǎn)足條件,
故選:D.

點(diǎn)評(píng) 本題主要考查兩角和差的三角函數(shù),三角函數(shù)的周期性和奇偶性的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=sinx+$\sqrt{3}$cosx.求:
(1)f(x)圖象的對(duì)稱(chēng)中心的坐標(biāo);
(2)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.某電視傳媒公司為了了解某類(lèi)體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該類(lèi)體育節(jié)目時(shí)間的頻率分布直方圖,其中收看時(shí)間分組區(qū)間是:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60].將日均收看該類(lèi)體育節(jié)目時(shí)間不低于40分鐘的觀眾稱(chēng)為“體育迷”.則抽取的100名觀眾中“體育迷”有15名.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)f(x)=tanx與g(x)=sinx的圖象在區(qū)間(-$\frac{π}{2}$,$\frac{π}{2}$)上的交點(diǎn)個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.記函數(shù)f(x)=$\frac{1}{\sqrt{2x-3}}$的定義域?yàn)榧螦,函數(shù)g(x)=$\frac{k-1}{x}$圖象在二、四象限時(shí),k的取值集合為B,函數(shù)h(x)=x2+2x+4的值域?yàn)榧螩.
(1)求集合A,B,C.
(2)求集合A∪(∁RB),A∩(B∪C).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在斜三棱柱ABC-A1B1C1中,A1B⊥AC,且A1B=AC=5,AA1=BC=13,且AB=12.
(1)求證:AA1⊥AC;
(2)求點(diǎn)B到面ACC1A1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.某幾何體的三視圖如圖所示,其中側(cè)視圖的下半部分曲線為半圓弧,則該幾何體的表面積為( 。
A.4π+16+4$\sqrt{3}$B.5π+16+4$\sqrt{3}$C.4π+16+2$\sqrt{3}$D.5π+16+2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,側(cè)面PAB⊥底面ABCD,底面ABCD為矩形,PA=PB,O為AB的中點(diǎn),OD⊥PC.
(1)求證:OC⊥PD;
(2)若PD與平面PAB所成的角為300,求二面角D-PC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知三棱錐的三視圖的正視圖是等腰三角形,俯視圖是邊長(zhǎng)為$\sqrt{3}$的等邊三角形,側(cè)視圖是直角三角形,且三棱錐的外接球表面積為8π,則三棱錐的高為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案