【題目】設(shè)函數(shù),其中為自然對(duì)數(shù)的底數(shù).

(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(Ⅱ)求函數(shù)在區(qū)間上的最小值.

【答案】(1)(2)當(dāng)時(shí), ;當(dāng)時(shí), ;當(dāng)時(shí),

【解析】試題分析;1通過時(shí),化簡(jiǎn)求出函數(shù)的導(dǎo)數(shù),求出切線的斜率以及切點(diǎn)坐標(biāo)然后求解切線方程;2求出函數(shù)的導(dǎo)數(shù),通過,利用新函數(shù)的導(dǎo)數(shù)利用當(dāng)上的單調(diào)性,推出;當(dāng)時(shí),推出;當(dāng)時(shí),通過導(dǎo)數(shù)求解.

試題解析:(Ⅰ) 時(shí),

,

,

∴曲線在點(diǎn)處的切線方程為

(Ⅱ),

(1)當(dāng)時(shí),∵, ,∴恒成立,

, 上單調(diào)遞增,

所以.

(2)當(dāng)時(shí),∵, ,∴恒成立,

, 上單調(diào)遞減,

所以.

(3)當(dāng)時(shí),

上單調(diào)遞減,在上單調(diào)遞增,

所以

綜上所述,當(dāng)時(shí), ;當(dāng)時(shí), ;當(dāng)時(shí),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是R上的奇函數(shù),且的圖象關(guān)于對(duì)稱,當(dāng)時(shí), ,

(Ⅰ)當(dāng) 時(shí),求的解析式;

(Ⅱ)計(jì)算的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各組函數(shù),在同一直角坐標(biāo)系中f(x)與g(x)相同的一組是(
A.f(x)= ,g(x)=
B.f(x)= ,g(x)=x﹣3
C.f(x)= ,g(x)=
D.f(x)=x,g(x)=lg(10x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖F1、F2是橢圓C1+y2=1與雙曲線C2的公共焦點(diǎn),A、B分別是C1、C2在第二、四象限的公共點(diǎn),若四邊形AF1BF2為矩形,則C2的離心率是
( 。

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為實(shí)數(shù).

)當(dāng)時(shí),求函數(shù)上的最大值和最小值;

)求函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB為半圓O的直徑,且AB=4,C為半圓上一點(diǎn),過點(diǎn)C作半圓的切線CD,過A點(diǎn)作AD⊥CD于D,交半圓于點(diǎn)E,DE=1.

(Ⅰ)證明:AC平分∠BAD;

(Ⅱ)求BC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)= (a>0且a≠1)是定義域?yàn)镽的奇函數(shù).

(Ⅰ)若f(1)>0,試求不等式f(x2+2x)+f(x-4)>0的解集;

(Ⅱ)若f(1)= ,且g(x)=a2xa-2x-4f(x),求g(x)在[1,+∞)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】把函數(shù)y=cos2x+ sin2x的圖象向左平移m(其中m>0)個(gè)單位,所得圖象關(guān)于y軸對(duì)稱,則m的最小值是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某人上午7時(shí)乘船出發(fā),以勻速海里/小時(shí)港前往相距50海里的港,然后乘汽車以勻速千米/小時(shí)()自港前往相距千米的市,計(jì)劃當(dāng)天下午4到9時(shí)到達(dá)市.設(shè)乘船和汽車的所要的時(shí)間分別為、小時(shí),如果所需要的經(jīng)費(fèi) (單位:元)

(1)試用含有、的代數(shù)式表示;

(2)要使得所需經(jīng)費(fèi)最少,求的值,并求出此時(shí)的費(fèi)用.

查看答案和解析>>

同步練習(xí)冊(cè)答案