已知正實(shí)數(shù)滿足,且恒成立,則的取值范圍是________.

 

【答案】

【解析】

試題分析:因?yàn)檎龑?shí)數(shù)滿足,即,可得,恒成立,即恒成立,即求的最小值,令,則,令,則上遞增,所以時(shí),,

考點(diǎn):1、對(duì)數(shù)的運(yùn)算性質(zhì),2、基本不等式,3、函數(shù)的單調(diào)性,4、不等式恒成立問題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)己知.函數(shù)f(x)=
x-4
x+1
(x≠-1)的反函數(shù)是f-1(x).設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意的正整數(shù)都有an=
f-1(Sn) -19
f-1(Sn)+1
成立,且bn=f-1(an)•
(I)求數(shù)列{bn}的通項(xiàng)公式;
(II)記cn=b2n-b2n-1(n∈N),設(shè)數(shù)列{cn}的前n項(xiàng)和為Tn,求證:對(duì)任意正整數(shù)n都有Tn
3
2
;
(III)設(shè)數(shù)列{bn}的前n項(xiàng)和為Rn,已知正實(shí)數(shù)λ滿足:對(duì)任意正整數(shù)n,Rn≤λn恒成立,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省五校高三下學(xué)期第二次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:填空題

已知正實(shí)數(shù)滿足,且恒成立,則的最大值是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

       (本小題滿分14分)

己知.函數(shù)的反函數(shù)是.設(shè)數(shù)列的前n項(xiàng)和為,對(duì)任意的正整數(shù)都有成立,且

(I)求數(shù)列的通項(xiàng)公式;      ,

(II)記,設(shè)數(shù)列的前n項(xiàng)和為,求證:對(duì)任意正整數(shù)n都有;

(III)設(shè)數(shù)列的前n項(xiàng)和為,已知正實(shí)數(shù)滿足:對(duì)任意正整數(shù)n,恒成立,求的最小值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年四川省自貢市高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

己知.函數(shù)f(x)=(x≠-1)的反函數(shù)是f-1(x).設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意的正整數(shù)都有an=成立,且bn=f-1(an)•
(I)求數(shù)列{bn}的通項(xiàng)公式;
(II)記cn=b2n-b2n-1(n∈N),設(shè)數(shù)列{cn}的前n項(xiàng)和為Tn,求證:對(duì)任意正整數(shù)n都有Tn
(III)設(shè)數(shù)列{bn}的前n項(xiàng)和為Rn,已知正實(shí)數(shù)λ滿足:對(duì)任意正整數(shù)n,Rn≤λn恒成立,求λ的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案